Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-7: 1014~1021

AuthorHeejeong Lee, Dong Gun Lee
Place of dutySchool of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
TitleProgrammed Cell Death in Bacterial Community: Mechanisms of Action, Causes and Consequences
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-7
AbstractIn the bacterial community, unicellular organisms act together as a multicellular being. Bacteria interact within the community and programmed cell death (PCD) in prokaryotes is a sort of altruistic action that enables the whole population to thrive. Genetically, encoded cell death pathways are triggered by DNA damage or nutrient starvation. Given the environmental and bacterial diversity, different PCD mechanisms are operated. Still, their biochemical and physiological aspects remain unrevealed. There are three main pathways; thymineless death, apoptosis-like death, and toxin-antitoxin systems. The discovery of PCD in bacteria has revealed the possibility of developing new antibiotics. In this review, the molecular and physiological characteristics of the three types of PCD and their development potential as antibacterial agents are addressed.
Full-Text
Key_wordBacterial programmed cell death, apoptosis-like death, thymineless death, mazEF pathway
References
  1. Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270.
    Pubmed CrossRef Pubmed Central
  2. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6: e1609.
    Pubmed CrossRef Pubmed Central
  3. Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69.
    Pubmed CrossRef Pubmed Central
  4. Dewachter L, Verstraeten N, Fauvart M, Michiels J. 2016. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death. Microb. Cell 3: 255-256.
    Pubmed CrossRef Pubmed Central
  5. Andryukov BG, Somova LM, Timchenko NF. 2018. Molecular and genetic characteristics of cell death in prokaryotes. Mol. Genet. Microbiol. 33: 73-83.
    CrossRef
  6. Zheng W, Rasmussen U, Zheng S, Bao X, Chen B, Gao Y, et al. 2013. Multiple modes of cell death discovered in a prokaryotic (cyanobacterial) endosymbiont. PLoS One 8: e66147.
    Pubmed CrossRef Pubmed Central
  7. Nagamalleswari E, Rao S, Vasu K, Nagaraja V. 2017. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45:8423-8434.
    Pubmed CrossRef Pubmed Central
  8. Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514.
    Pubmed CrossRef Pubmed Central
  9. Dewachter L, Verstraeten N, Monteyne D, Kint CI, Versees W, Perez-Morga D, et al. 2015. A single-amino-acid substitution in Obg activates a new programmed cell death pathway in Escherichia coli. MBio. 6: e01935-01915.
    Pubmed CrossRef Pubmed Central
  10. Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8:423-435.
    Pubmed CrossRef Pubmed Central
  11. Peeters SH, de Jonge MI. 2018. For the greater good:Programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169.
    Pubmed CrossRef
  12. Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, Doebeli M. 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 454: 987-990.
    Pubmed CrossRef
  13. Tanouchi Y, Pai A, Buchler NE, You L. 2012. Programming stress-induced altruistic death in engineered bacteria. Mol. Syst. Biol. 8: 626.
    Pubmed CrossRef Pubmed Central
  14. Lee W, Lee DG. 2014. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol. 69: 794-801.
    Pubmed CrossRef
  15. Lee B, Hwang JS, Lee DG. 2019. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl. Microbiol. Biotechnol. 103: 1417-1427.
    Pubmed CrossRef
  16. Lee H, Lee DG. 2018. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids Surf. B: Biointerfaces 167: 1-7.
    Pubmed CrossRef
  17. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85: 1115-1122.
    Pubmed CrossRef
  18. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. 2014. Apoptosis-like death, an extreme SOS response in Escherichia coli. MBio 5: e01426-01414.
    Pubmed CrossRef Pubmed Central
  19. Vercruysse M, Köhrer C, Shen Y, Proulx S, Ghosal A, Davies BW, et al. 2016. Identification of YbeY-protein interactions involved in 16S rRNA maturation and stress regulation in Escherichia coli. MBio 7: e01785-01716.
    Pubmed CrossRef Pubmed Central
  20. Ghosal A, Köhrer C, Babu VM, Yamanaka K, Davies BW, Jacob AI, et al. 2017. C21orf57 is a human homologue of bacterial YbeY proteins. Biochem. Biophys. Res. Commun. 484: 612-617.
    Pubmed CrossRef Pubmed Central
  21. Lee W, Kim KJ, Lee DG. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27: 1191-1201.
    Pubmed CrossRef
  22. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell. 46: 561-572.
    Pubmed CrossRef Pubmed Central
  23. Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. 2011. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet. 7(9): e1002244.
    Pubmed CrossRef Pubmed Central
  24. Peng Q, Zhou SQ, Yao F, Hou B, Huang YC, Hua DX, et al. 2011. Baicalein suppresses the SOS response system of staphylococcus aureus induced by ciprofloxacin. Cell. Physiol. Biochem. 28: 1045-1050.
    Pubmed CrossRef
  25. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810.
    Pubmed CrossRef
  26. Steinmann ME, González-Salgado A, Bütikofer P, Mäser P, Sigel E. 2015. A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes. FASEB J. 29: 3228-3237.
    Pubmed CrossRef
  27. Asplund-Samuelsson J. 2015. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol. Microbiol. 98: 1-6.
    Pubmed CrossRef
  28. Yun DG, Lee DG. 2016. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 100: 5505-5514.
    Pubmed CrossRef
  29. Lee H, Lee DG. 2019. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie 157: 195-203.
    Pubmed CrossRef
  30. Khodursky A, Guzman EC, Hanawalt PC. 2015. Thymineless death lives on: new insights into a classic phenomenon. Annu. Rev. Microbiol. 69: 247-263.
    Pubmed CrossRef
  31. Guzman EC, Martin CM. 2015. Thymineless death, at the origin. Front Microbiol. 6: 499.
    Pubmed CrossRef Pubmed Central
  32. Fonville NC, Bates D, Hastings PJ, Hanawalt PC, Rosenberg SM. 2010. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 6: e1000865.
    Pubmed CrossRef Pubmed Central
  33. Matic I. 2018. The major contribution of the DNA damagetriggered reactive oxygen species production to cell death:implications for antimicrobial and cancer therapy. Curr. Genet. 64: 567-569.
    Pubmed CrossRef
  34. Hamilton HM, Wilson R, Blythe M, Nehring RB, Fonville NC, Louis EJ, et al. 2013. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response. DNA Repair (Amst). 12: 993-999.
    Pubmed CrossRef Pubmed Central
  35. Hong Y, Li L, Luan G, Drlica K, Zhao X. 2017. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat. Microbiol. 2: 1667-1675.
    Pubmed CrossRef Pubmed Central
  36. Khan SR, Kuzminov A. 2019. Thymineless death in Escherichia coli is unaffected by the chromosomal replication complexity. J. Bacteriol. 00797-00718.
    Pubmed CrossRef
  37. Hastings PJ, Rosenberg SM. 2017. A radical way to die. Nat. Microbiol. 2: 1582-1583.
    Pubmed CrossRef
  38. Fonville NC, Vaksman Z, DeNapoli J, Hastings PJ, Rosenberg SM. 2011. Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD. Genetics 189: 23-36.
    Pubmed CrossRef Pubmed Central
  39. Morimatsu K, Kowalczykowski SC. 2014. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. Proc. Natl. Acad. Sci. USA 111: E5133-5142.
    Pubmed CrossRef Pubmed Central
  40. Ramisetty BC, Natarajan B, Santhosh RS. 2015. mazEFmediated programmed cell death in bacteria: “what is this?”. Crit. Rev. Microbiol. 41: 89-100.
    Pubmed CrossRef
  41. Hu MX, Zhang X, Li EL, Feng YJ. 2010. Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. Int. J. Microbiol. 2010:781430.
    Pubmed CrossRef Pubmed Central
  42. Tripathi A, Dewan PC, Siddique SA, Varadarajan R. 2014. MazF-induced growth inhibition and persister generation in Escherichia coli. J. Biol. Chem. 289: 4191-4205.
    Pubmed CrossRef Pubmed Central
  43. Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M, Husson RN, et al. 2016. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res. 44: 1256-1270.
    Pubmed CrossRef Pubmed Central
  44. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, EngelbergKulka H. 2007. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655.
    Pubmed CrossRef
  45. Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. 2009. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell 36:845-860.
    Pubmed CrossRef Pubmed Central
  46. Erental A, Sharon I, Engelberg-Kulka H. 2012. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 10(3): e1001281.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd