Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-7: 1061~1070

AuthorJu-Hee Min, Lebaka Veeranjaneya Reddy, Charalampopoulos Dimitris, Young-Min Kim, Young-Jung Wee
Place of dutyDepartment of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
TitleOptimized Production of Poly(γ-Glutamic acid) By Bacillus sp. FBL-2 through Response Surface Methodology Using Central Composite Design
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-7
AbstractIn the present study, the optimization of poly(γ-glutamic acid) (γ-PGA) production by Bacillus sp. FBL-2 was studied using a statistical approach. One-factor-at-a-time method was used to investigate the effect of carbon sources and nitrogen sources on γ-PGA production and was utilized to select the most significant nutrients affecting the yield of γ-PGA. After identifying effective nutrients, response surface methodology with central composite design (CCD) was used to obtain a mathematical model to identify the optimum concentrations of the key nutrients (sucrose, L-glutamic acid, yeast extract, and citric acid) for improvement of γ-PGA production. The optimum amount of significant medium components appeared to be sucrose 51.73 g/l, L-glutamic acid 105.30 g/l, yeast extract 13.25 g/l, and citric acid 10.04 g/l. The optimized medium was validated experimentally, and γ-PGA production increased significantly from 3.59 g/l (0.33 g/l/h) to 44.04 g/l (3.67 g/l/h) when strain FBL-2 was cultivated under the optimal medium developed by the statistical approach, as compared to non-optimized medium.
Full-Text
Key_wordPoly(γ-glutamic acid), L-glutamic acid, Bacillus sp. FBL-2, optimization, response surface methodology
References
  1. Shih I L, V an Y T. 2 001. T he p rodu ction of poly(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225.
    CrossRef
  2. Buescher JM, Margaritis AM. 2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical, and food industries. Crit. Rev. Biotechnol. 27: 1-19.
    Pubmed CrossRef
  3. Akagi T, Baba M, Akashi M. 2007. Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48: 6729-6747.
    CrossRef
  4. Li C. 2002. Poly(L-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 54: 695-713.
    CrossRef
  5. Matsuo K, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, et al. 2011. Intranasal immunization with poly(γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J. Control. Release 152: 310-316.
    Pubmed CrossRef
  6. Tanimoto H, Fox T, Eagles J, Satoh H, Nozava H, Okiyama A, et al. 2007. Acute effect of poly(γ-glutamic acid) on calcium absorption in post-menopausal women. J. Am. Coll. Nutr. 26:645-649.
    Pubmed CrossRef
  7. Shih I L, Van Y T, S au YY. 2 003. A ntifreeze activities of poly(γ-glutamic acid) produced by Bacillus licheniformis. Biotechnol. Lett. 25: 1709-1712.
  8. Bhat AR, Irorere VU, Bartlett T, Hill D, Kedia G, Morris MR, et al. 2013. Bacillus subtilis natto: a non-toxic source of poly(γ-glutamic acid) that could be used as a cryoprotectant for probiotic bacteria. AMB Express 3: 36.
    Pubmed CrossRef Pubmed Central
  9. Lee CY, Kuo MI. 2011. Effect of γ-polyglutamate on the rheological properties and microstructure of tofu. Food Hydrocoll. 25: 1034-1040.
    CrossRef
  10. Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. 2012. Harvesting of microalgae by flocculation with poly(γ-glutamic acid). Bioresour. Technol. 112: 212-220.
    Pubmed CrossRef
  11. Wang F, Zhao J, Wei X, Huo F, Li W, Hu Q, Liu H. 2014. Adsorption of rare earths (III) by calcium alginate-poly glutamic acid hybrid gels. J. Chem. Technol. Biotechnol. 89:969-977.
    CrossRef
  12. Candela T, Fouet A. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091-1098.
    Pubmed CrossRef
  13. Ashiuchi M. 2010. Occurrence and biosynthetic mechanism of poly-gamma-glutamic acid, pp. 77-93. In Hamano Y (ed.), Amino-Acid Homopolymers Occurring in Nature, Springer,New York, N.Y.
    CrossRef
  14. Birrer GA, Cromwick AM, Gross RA. 1994. γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int. J. Biol. Macromol. 16: 265-275.
    CrossRef
  15. Kunioka M, Goto A. 1994. Biosynthesis of poly(γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biotechnol. 40: 867-872.
    CrossRef
  16. Jeong JH, Kim JN, Wee YJ and Ryu HW. 2010. The statistically optimized production of poly(γ-giutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3. Bioresour. Technol. 101: 4533-4539.
    Pubmed CrossRef
  17. Cromwick AM, Birrer GA, Gross RA. 1996. Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol. Bioeng. 50: 222-227.
    CrossRef
  18. Jung DH, Jung S, Yun, JS, Kim JN, Wee YJ, Jang HG, et al. 2005. Influences of cultural medium component on the production of poly(γ-glutamic acid) by Bacillus sp. RKY3. Biotechnol. Bioprocess Eng. 10: 289-295.
    CrossRef
  19. Chen X, Chen S, Sun M, Yu Z. 2005. Medium optimization by response surface methodology for poly-γ-glutamic acid produ ction u sing d airy m anu re a s the basis of a s olid substrate. Appl. Microbiol. Biotechnol. 69: 390-396.
    Pubmed CrossRef
  20. Bajaj B, Lele SS, Singhal RS. 2009. A statistical approach to optimization of fermentative production of poly(γ-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour. Technol. 100: 826-832.
    Pubmed CrossRef
  21. Reddy LVA, Wee YJ, Yun JS, Ryu HW. 2008. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour. Technol. 99: 2242-2249.
    Pubmed CrossRef
  22. Shi F, Xu Z, Cen P. 2006. Efficient production of poly-γglutamic acid by Bacillus subtilis ZJU-7. Appl. Biochem. Biotechnol. 133: 271-281.
    CrossRef
  23. Du G, Yang G, Qu Y, Chen J, Lun S. 2005. Effects of glycerol on the production of poly(γ-glutamic acid) by Bacillus licheniformis. Process Biochem. 40: 2143-2147.
    CrossRef
  24. Goto A, Kunioka M. 1992. Biosynthesis and hydrolysis of poly-(γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031-1035.
    Pubmed CrossRef
  25. Anju AJ, Binod P, Pandey A. 2017. Production and characterization of microbial poly-γ-glutamic acid from renewable resources. Indian J. Exp. Biol. 55: 405-410.
  26. Ashiuchi M, Tani K, Soda K, Misono H. 1998. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. J. Biochem. 123:1156-1163.
    Pubmed CrossRef
  27. Peng Y, Jiang B, Zhang T, Mu W, Miao M, Hua Y. 2015. High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochem. 50: 329-335.
    CrossRef
  28. Tork SE, Aly MM, Alakilli SY, Al-Seeni MN. 2015. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20. Int. J. Biol. Macromol. 74: 382-391.
    Pubmed CrossRef
  29. Bajaj IB, Singhal RS. 2009. Enhanced production of poly (γglutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl. Biochem. Biotechnol. 159:133-141.
    Pubmed CrossRef
  30. Soliman NA, Berekaa MM, Abdel-Fattah YR. 2005. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26:application of Plackett-Burman experimental design to evaluate culture requirements. Appl. Microbiol. Biotechnol. 69:259-267.
    Pubmed CrossRef
  31. Cao M, Geng W, Liu L, Song C, Xie H, Guo W, et al. 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol. 102: 4251-4257.
    Pubmed CrossRef
  32. Feng J, Shi Q, Zhou G, Wang L, Chen A, Xie X, et al. 2017. Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochem. 56: 30-36.
    CrossRef
  33. Cai D , Hu S, Chen Y , Liu L, Yang S , Ma X , et al. 2018. Enhanced production of poly-γ-glutamic acid by overexpression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02. Appl. Biochem. Biotechnol. 185: 959-970.
    Pubmed CrossRef
  34. Reddy LV, Kim YM, Yun JS, Ryu HW, Wee YJ. 2016. LLactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1. Bioresour. Technol. 209: 187-194.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd