Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-1: 62~70

AuthorDingkang Wang, Min Zhang, Jun Huang, Rongqing Zhou, Yao Jin, Chongde Wu
Place of dutyCollege of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, P.R. China,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
TitleZygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-1
AbstractZygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.
Full-Text
Key_wordSalt stress, Zygosaccharomyces rouxii, cell membrane, structure, functionally
References
  1. Bert P, Paul B, Folgering JHA, Friesen RHE, Moe PC, Tiemen V D H. 2 010. H ow d o membrane p roteins sense water stress? Mol. Microbiol. 44: 889-902.
    Pubmed CrossRef
  2. Zhang YM, Rock CO. 2008. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6: 222-233.
    Pubmed CrossRef
  3. Hoang TML, Williams B, Khanna H, Dale J, Mundree SG. 2014. Physiological basis of salt stress tolerance in rice expressing the anti-apoptotic gene SfIAP. Funct. Plant Biol. 41: 1168-1177.
    CrossRef
  4. Gorini A, Canosi U, Devecchi E, Geroldi D, Villa RF. 2002. ATPases enzyme activities during ageing in different types of somatic and synaptic plasma membranes from rat frontal cerebral cortex. Prog. Neuropsychopharmacol. Biol. Psychinatry 26: 81-90.
    CrossRef
  5. Meneghel J, Passot S, Cenard S, Réfrégiers M, Jamme F, Fonseca F. 2017. Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress. Appl. Microbiol. Biotechnol. 101: 6907-6917.
    Pubmed CrossRef
  6. Ishmayana S, Kennedy UJ, Learmonth RP. 2017. Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 33: 218-228.
    Pubmed CrossRef
  7. Turk M, Méjanelle L, Šentjurc M, Grimalt JO, Gundecimerman N, Plemenitaš A. 2004. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8: 53-61.
    Pubmed CrossRef
  8. Sara L, Giacomo Z, Severino Z, Marilena B, Maurizio C, Ilaria M. 2010. Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae. Int. J. Food. Microbiol. 141: 229-235.
    Pubmed CrossRef
  9. Dakal TC, Solieri L, Giudici P. 2014. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int. J. Food. Microbiol. 185: 140-157.
    Pubmed CrossRef
  10. Wu C, Zhang J, Wang M, Du G, Chen J. 2012. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biot. 39: 1031-1039.
    Pubmed CrossRef
  11. González-Hernández JC, Jiménez-Estrada M, Peña A. 2005. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 9: 7-16.
    Pubmed CrossRef
  12. Zhao Q, S hao L, H u X, W u G, D u J, X ia J , et al. 2013. Lipoxin A4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats. Mediators. Inflamm. 2013: 231351.
    Pubmed CrossRef Pubmed Central
  13. Alizadeh F, Khodavandi A, Zalakian S. 2017. Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans. Curr. Med. Mycol. 3: 13-19.
    CrossRef
  14. Liao ZG, Tang T, Guan XJ, Dong W, Zhang J, Zhao GW, et al. 2016. Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport. Molecules. 21: e1606.
    Pubmed CrossRef Pubmed Central
  15. Ansari S, Gupta P, Mahanty SK, Prasad R. 1993. The uptake of amino acids by erg mutants of Candida albicans. J. Med. Vet. Mycol. 31: 377-386.
    CrossRef
  16. Wu C, Zhang J, Chen W, Wang M, Du G, Chen J. 2012. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl. Microbioliol. Biotechnol. 93: 707-722.
    Pubmed CrossRef
  17. Zheng J, Liang R, Zhang L, Wu C, Zhou R, Liao X. 2013. Characterization of microbial communities in strong aromatic liquor fermentation pit muds of different ages assessed by combined DGGE and PLFA analyses. Food Res. Int. 54: 660-666.
    CrossRef
  18. Gandhi A, Shah NP. 2016. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells. J. Diary. Sci. 99: 2594-2605.
    Pubmed CrossRef
  19. Andreishcheva EN, Isakova EP, Sidorov NN, Abramova NB, Ushakova NA, Shaposhnikov GL, et al. 1999. Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Moscow) 64: 1061-1067.
  20. Sunder S, Singh AJ, Gill S, Singh B. 1996. Regulation of intracellular level of Na+, K+ and glycerol in Saccharomyces cerevisiae under osmotic stress. Mol. Cell. Biochem. 158: 121-124.
    Pubmed CrossRef
  21. Fu X, Liang W, Du P, Yan M, Kan B. 2014. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathog. 6: 47.
    Pubmed CrossRef Pubmed Central
  22. Sanadhya P, Agarwal P, Khedia J, Agarwal PK. 2015. A low-affinity K+ transporter AlHKT2;1 from recretohalophyte Aeluropus lagopoides confers salt tolerance in Yeast. Mol. Biotechnol. 57: 489-498.
    Pubmed CrossRef
  23. Yin W, Li X, Feng S, Cheng W, Tang B, Shi YL, et al. 2009. Plasma membrane depolarization and Na,K-ATPase impairment induced by mitochondrial toxins augment leukemia cell apoptosis via a novel mitochondrial amplification mechanism. Biochem. Pharmacol. 78: 191-202.
    Pubmed CrossRef
  24. Li J, Wang J, Yang L, Chen Y, Zhou Y. 2014. Changes in plasma osmolality and Na+/K+ ATPase activity of juvenile obscure puffer Takifugu obscurus following salinity challenge. Biochem. Syst. Ecol. 56: 111-117.
    CrossRef
  25. Petrezsélyová S, López-Malo M, Canadell D, Roque A, Serra-Cardona A, Marqués MC, et al. 2016. Regulation of the Na+/K+-ATPase Ena1 expression by calcineurin/Crz1 under high pH stress: a quantitative study. PLoS One 11: e0158424.
    Pubmed CrossRef Pubmed Central
  26. Dickey AN, Wen-Sau Y, Wen-Saul Y, Roland F. 2009. Using ergosterol to mitigate the deleterious effects of ethanol on bilayer structure. J. Phys. Chem. B. 113: 2388-2397.
    Pubmed CrossRef Pubmed Central
  27. Villares A, Mateo-Vivaracho L, García-Lafuente A, Guillamón E. 2014. Storage temperature and UV-irradiation influence on the ergosterol content in edible mushrooms. Food Chem. 147: 252-256.
    Pubmed CrossRef
  28. Abe F, Hiraki T. 2009. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. BBA-Biomembranes 1788: 743-752.
    Pubmed CrossRef
  29. Montañés FM, Pascual-Ahuir A, Proft M. 2011. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAPK kinase and the Mot3 and Rox1 transcription factors. Mol. Microbiol. 79: 1008-1023.
    Pubmed CrossRef
  30. Swan TM, Watson K. 2010. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol. Lett. 169: 191-197.
    Pubmed CrossRef
  31. Yu KO, Ju J, Ramzi AB, Choe SH, Kim SW, Park C, et al. 2012. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Enzyme Microb. Technol. 51: 237-243.
    Pubmed CrossRef
  32. Bhattacharya S, Esquivel BD, White TC. 2018. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 9: e01291-18.
    Pubmed CrossRef Pubmed Central
  33. Zhang M, Yu Q, Liang C, Zhang B, Li M. 2016. Lipid homeostasis is involved in plasma membrane and endoplasmic reticulum stress in Pichia pastoris. Biochem. Bioph. Res. Co. 478: 777-783.
    Pubmed CrossRef
  34. Kamthan A, Kamthan M, Datta A. 2017. Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance. PLoS One 12: e0173381.
    Pubmed CrossRef Pubmed Central
  35. Los DA, Allakhverdiev SI. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 116: 489-509.
    Pubmed CrossRef
  36. Qi W, Fan ZC, Wang CL, Hou LH, Wang XH, Liu JF, et al. 2014. Comparative study of physiological adaptation to salt stress in the genome shuffled Candida versatilis and a wildtype salt-tolerant yeast strain. Eur. Food. Res. Technol. 238: 675-682.
    CrossRef
  37. Chen GQ, Yue, Chen F. 2010. Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophycease) under heterotrophic culture condition. J. Phycol. 44: 1309-1314.
    Pubmed CrossRef
  38. Kerkeb L, Donaire JP, Venema K, RodrãGuez-Rosales MP. 2010. Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli. Physiol. Plant. 113: 217-224.
    Pubmed CrossRef
  39. MurãNovã S, Dercovã K. 2014. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int. J. Food Microbiol. 2014: 1-16.
    Pubmed CrossRef Pubmed Central
  40. Cholewa JM, Lucas GEF, Nelo Eidy Z. 2014. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids. 46: 1785-1793.
    Pubmed CrossRef
  41. Turk M, Montiel V, Zigon D, Plemenitas A, Ramos J. 2007. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology 153: 3586-3592.
    Pubmed CrossRef
  42. Beney L, Gervais P. 2001. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl. Microbiol. Biotechnol. 57: 34-42.
    Pubmed CrossRef
  43. Moorman MA, Thelemann CA, Zhou S, Pestka JJ, Linz JE, Ryser ET. 2008. Altered hydrophobicity and membrane composition in stress-adapted Listeria innocua. J. Food Prot. 71: 182-185.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd