Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-7: 1033~1042

AuthorVenkatesh Perumal, Zhuang Yao, Jeong A Kim, Hyun-Jin Kim, Jeong Hwan Kim
Place of dutyInstitute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
TitlePurification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-7
AbstractBacillus velezensis BS2 was isolated from meongge (common sea squirt) jeotgal, a Korean fermented seafood, and produces a bacteriocin, BacBS2, which strongly inhibits Listeria monocytogenes and Bacillus cereus. BacBS2 was partially purified by Q-Sepharose column chromatography after ammonium sulfate precipitation of the culture supernatant, then further purified by Sephadex G-50 column chromatography. Partially purified BacBS2 was estimated to be 6.5 kDa in size by Tricine-SDS PAGE and activity detection by gel-overlay. Enzyme treatment and FT-IR spectrum of partially purified BacBS2 confirmed its proteinaceous nature. BacBS2 was fully stable at pH 4-9, and half of activity was retained at pH 1-3. Full activity was retained after exposure to 80ºC for 15 min, but half of the activity was retained upon exposure to 90ºC for 15 min or 100ºC for 10 min. BacBS2 inhibited L. monocytogenes by bactericidal mode of action. B. velezensis BS2 and its BacBS2 seem useful as biopreservatives for fermented foods such as jeotgal.
Full-Text
Key_wordBacteriocin, Bacillus velezensis, antibacterial activity, jeotgal
References
  1. Sumi CD, Yang BW, Yeo IC, Hahm YT. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 61: 93-103.
    Pubmed CrossRef
  2. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
    Pubmed CrossRef
  3. Leite JA, Tulini FL, dos Reis-Teixeira FB, Rabinovitch L, Chaves JQ, Rosa NG, et al. 2016. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. LWT-Food Sci. Technol. 72: 261-266.
    CrossRef
  4. Abdel-Mohsein H, Yamamoto N, Otawa K, Tada C, Nakai Y. 2010. Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161.
    Pubmed CrossRef
  5. Chehimi S, Delalande F, Sablé S, Hajlaoui MR, Van Dorsselaer A, Limam F, et al. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53:284-290.
    Pubmed CrossRef
  6. Martirani L, Varcamonti M, Naclerio G, De Felice M. 2002. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb. Cell Fact. 1: 1-5.
    Pubmed CrossRef Pubmed Central
  7. Yao Z, K im J A, K im J H. 2 019. C harac terization o f a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. J. Microbiol. Biotechnol. 29:347-356.
    Pubmed CrossRef
  8. Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. 2018. Characteristics and application of a novel species of Bacillus:Bacillus velezensis. ACS Chem. Biol. 13: 500-505.
    Pubmed CrossRef
  9. Cho MS, Jin YJ, Kang BK, Park YK, Kim C, Park DS. 2018. Understanding the ontogeny and succession of Bacillus velezensis and B. subtilis subsp. subtilis by focusing on kimchi fermentation. Sci. Rep. 8: 7045.
    Pubmed CrossRef Pubmed Central
  10. Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G, 2018. Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol. 78: 322-330.
    Pubmed CrossRef
  11. Nam MH, Park MS, Kim HG, Yoo SJ. 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol. 19: 520-524.
    Pubmed CrossRef
  12. Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A. 2007. Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J. Microbiol. Biotechnol. 23: 375-382.
    CrossRef
  13. Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the river Vélez in Málaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195.
    Pubmed CrossRef
  14. Gao YH, Guo RJ, Li SD. 2018. Draft genome sequence of Bacillus velezensis B6, a rhizobacterium that can control plant diseases. Genome Announc. 6(12): e00182-18.
    Pubmed CrossRef Pubmed Central
  15. Baptista JP, Sanches PP, Teixeira GM, Morey AT, Tavares ER, Yamada-Oqatta SF, et al. 2018. Complete genome sequence of Bacillus velezensis LABIM40, an effective antagonist of fungal plant pathogens. Genome Announc. 6: e00595-18.
    Pubmed CrossRef Pubmed Central
  16. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888.
    Pubmed CrossRef
  17. Bradford MM. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    Pubmed CrossRef
  18. Schägger H, von Jagow G. 1987. Tricine-sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379.
    CrossRef
  19. Liu X, Lee JY, Jeong SJ, Cho KM, Kim GM, Shin JH, et al. 2015. Properties of a bacteriocin produced by Bacillus subtilis EMD4 isolated from ganjang (soy sauce). J. Microbiol. Biotechnol. 25: 1493-1501.
    Pubmed CrossRef
  20. Liu X, Shim JM, Yao Z, Lee JY, Lee KW, Kim HJ, et al. 2016. Properties of antimicrobial substances produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8. Microbiol. Biotechnol. Lett. 44: 9-18.
    CrossRef
  21. Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, et al. 2008. I solation a nd p artial c haracterization o f Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123.
    Pubmed CrossRef
  22. Tapi A, Chollet-Imbert M, Scherens B, Jacques P. 2010. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85: 1521-1531.
    Pubmed CrossRef
  23. Athukorala SN, Fernando WG, Rashid KY. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55: 1021-1032.
    Pubmed CrossRef
  24. Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML. 2008. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104: 1067-1074.
    Pubmed CrossRef Pubmed Central
  25. Cintas LM, Casaus P, Fernández MF, Hernández PE. 1998. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15: 289-298.
    CrossRef
  26. Benitez LB, Velho RV, Lisboa MP, da Costa Medina LF, Brandelli A. 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791-797.
    Pubmed CrossRef
  27. Perumal V, Repally A, Dasari A, Venkatesan A. 2016. Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes. Prep. Biochem. Biotechnol. 46: 686-694.
    Pubmed CrossRef
  28. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. 2018. Bacillus velezensis FZB42 in 2018: the grampositive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491.
    Pubmed CrossRef Pubmed Central
  29. Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M. 2017. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 249: 20-24.
    Pubmed CrossRef
  30. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. 2014. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 196: 1842–1852.
    Pubmed CrossRef Pubmed Central
  31. Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, et al. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8: 4360.
    Pubmed CrossRef Pubmed Central
  32. Adeniji AA, Aremu OS, Babalola OO. 2018. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.:metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10. 5. MicrobiologyOpen 8(6): e00742.
    Pubmed CrossRef Pubmed Central
  33. Uqras S, Sezen K, Kati H, Demirbaq Z. 2013. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 from a hazelnut pest. J. Microbiol. Biotechnol. 23: 167-176.
    Pubmed CrossRef
  34. Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol. 8: 22.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd