Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-7: 1096~1103

AuthorMojde Moradipour, Roohallah Saberi-Riseh, Reza Mohammadinejad, Ahmad Hosseini
Place of dutyDepartment of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan 7718897111, Iran
TitleNano-Encapsulation of Plant Growth-Promoting Rhizobacteria and Their Metabolites Using Alginate-Silica Nanoparticles and Carbon Nanotube Improves UCB1 Pistachio Micropropagation
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-7
AbstractUCB-1 is the commercial rootstock of pistachio. Reproduction of this rootstock by tissue culture is limited by low levels of proliferation rate. Therefore, any compound that improves the proliferation rate and the quality of the shoots can be used in the process of commercial reproduction of this rootstock. Use of plant growth-promoting bacteria is one of the best ideas. Given the beneficial effects of nanoparticles in enhancement of the growth in plant tissue cultures, the aim of the present study was to investigate the effects of nanoencapsulation of plant growth-promoting rhizobacteria (using silica nanoparticles and carbon nanotubes) and their metabolites in improving UCB1 pistachio micropropagation. The experiment was conducted in a completely randomized design with three replications. Before planting, treatments on the DKW medium were added. The results showed that the use of Pseudomonas fluorescens VUPF5 and Bacillus subtilis VRU1 nanocapsules significantly enhanced the root length and proliferation. The nanoformulation of the VUPF5 metabolite led to the highest root length (6.26 cm) and the largest shoot (3.34 cm). Inoculation of explants with the formulation of the metabolites (both bacterial strains) significantly elevated the average shoot length and the fresh weight of plant compared to the control. The explants were dried completely using both bacterial strains directly and with capsule coating after the three days.
Full-Text
Key_wordCarbon nanotube, SiO2 nanoparticle, UCB1, PGPR, micropropagation
References
  1. Razavi SM, Emadzadeh B, Rafe A. Amini AM. 2007. The physical properties of pistachio nut and its kernel as a function of moisture content and variety: Part I. Geometrical properties. J. Food Eng. 81: 209-217.
    CrossRef
  2. Ti lkat E, Süzerer V, Akdemir H, Ayaz Tilkat E, Ozden Çiftçi Y, Onay A. 2013. A rapid and effective protocol for surface sterilization and in vitro culture initiation of adult male pistachio (Pistacia vera L. cv.“Atlı”). Academia J. Sci. Res. 1: 134-141.
  3. Morfeine EA. 2013. Effect of anti-browning on initiation phase of M usa species g rand n aine in vitro. Forest. Prod. J. 2: 45-47.
  4. Barghchi M. Alderson APG. 1983. In vitro Propagation of Pistachia vera L. from seedling tissues. J. Hortic. Sci. Biotechnol. 58: 435-445.
    CrossRef
  5. Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586.
    CrossRef
  6. Frommel MI, Nowak J. Lazarovits G. 1991. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas s p. Plant Physiol. 96: 928-936.
    Pubmed CrossRef Pubmed Central
  7. d el Carmen Jaizme-Vega M, Rodríguez-Romero AS, Guerra MSP. 2004. Potential use of rhizobacteria from the Bacillus genus to stimulate the plant growth of micropropagated bananas. Fruits 59: 83-90.
    CrossRef
  8. Glick BR, Penrose DM. Ma W. 2001. Bacterial promotion of plant growth. Biotechnol. Adv. 19: 135-138.
    CrossRef
  9. Nezami SR, Yadollahi A, Hokmabadi H. Eftekhari M. 2015. Control of shoot tip necrosis and plant death during in vitro multiplication of pistachio rootstock UCB1 (Pistacia integrima× P. atlantica). J. Nuts. 6: 27-35.
  10. Ferguson L, Beede R, Reyes H. Seydi M. California pistachio rootstock trials; 1989-2001. California Pistachio Ind. Annu. Rep. 19-24.
  11. Mason G. Guttridge C. 1974. The role of calcium, boron and some divalent ions in leaf tipburn of strawberry. Sci. Hortic. 2: 299-308.
    CrossRef
  12. Oloumia H, Ahmadi Mousavib E. Mohammadi Nejad R. 2018. Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ. J. Plant Physiol. 65: 260-268.
    CrossRef
  13. A hmadi Z, Mohammadinejad Reza, Ashrafizadeh M. 2019. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in las decades. J. Drug Deliv. Sci. Technol. 51: 591-604.
    CrossRef
  14. M oradi Pour M, Saberi-Riseh R, Mohammadinejad R, Hosseini A. 2019. Investigating the formulation of alginategelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int. J. Biol. Macromol. 133: 603-613.
    Pubmed CrossRef
  15. Heydari HR. 2013. A study on application of carbon nanotubes (CNTs) as a plant growth regulator in Anthurium andreanum L . micropropagation, M . Sc. dissertation, f aculty of agriculture, University of Tarbiat Modares. Iran. (In Farsi).
  16. Kh odakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3: 3221-3227.
    Pubmed CrossRef
  17. Cañ as JE, Long M, Nations S, Vadan R, Dai L, Luo M, et al. 2008. Effects of functionalized and nonfunctionalized singlewalled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 27: 1922-1931.
    Pubmed CrossRef
  18. Laane HM. 2018. The effects of foliar sprays with different silicon compounds. Plants 7: 45.
    Pubmed CrossRef Pubmed Central
  19. Ma J F, Y amaji N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11: 392-397.
    Pubmed CrossRef
  20. D eshmukh RK, Ma JF, Bélanger RR. 2017. Role of silicon in plants. Front. Plant Sci. 8: 1858.
    Pubmed CrossRef Pubmed Central
  21. Ramíre z R, Arias M, David J, Bedoya JC, Rueda L, Antoni E, et al. 2015. Metabolites produced by antagonistic microbes inhibit the principal avocado pathogens in vitro. Agron. Colomb. 33: 58-63.
    CrossRef
  22. Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole-3 acetic acid. Can. J. Microbiol. 42: 207-220.
    Pubmed CrossRef
  23. Tu L, He Y, Yang H, Wu Z., Yi L. 2015. Preparation and characterization of alginate–gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J. Biomater. Sci. Polym. Ed. 26: 735-749.
    Pubmed CrossRef
  24. Mir za MS, Ahmad W, Latif F, Haurat J. Bally R, Normand P, et al. 2001. Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micropropagated sugarcane in vitro. Plant Soil 237: 47-54.
    CrossRef
  25. Beneduzi A , Ambrosini A, P assaglia L M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Int. J. Genet Mol. Biol. 35:1044-1051.
    CrossRef
  26. V estberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, et al. 2004. Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl. Soil Ecol. 27: 243-258.
    CrossRef
  27. Nowak J. Shulaev V . 2003. Priming f or t ransplant stress resistance in in vitro propagation. In Vitro Cell. Dev. Biol. Plant 39: 107-124.
    CrossRef
  28. L arraburu EE, Carletti SM, Cáceres EAR. Llorente BE. 2007. Micropropagation of photinia employing rhizobacteria to promote root development. Plant Cell Rep. 26: 711-717.
    Pubmed CrossRef
  29. Ja ckson P, Jacobsen NR. Baun A, Birkedal R, Kühnel D. Jensen KA, et al. 2013. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem. Cent. J. 7: 154.
    Pubmed CrossRef Pubmed Central
  30. Mondal A, Basu R, Das S. Nandy P. 2011. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J. Nanopart. Res. 13: 4519.
    CrossRef
  31. Ca sey A, Farrell GF, McNamara M, Byrne HJ, Chambers G. 2005. Interaction of carbon nanotubes with sugar complexes. Synth. Met. 153: 357-360.
    CrossRef
  32. Kh odakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, et al. 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticleplant interactions. Proc. Natl. Acad. Sci. USA 108: 1028-1033.
    Pubmed CrossRef Pubmed Central
  33. L iu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9: 1007-1010.
    Pubmed CrossRef
  34. Oloumi H, Mousavi E. Mohammadinejad R. 2014. Multiwalled carbon nanotubes enhance Cd2+ and Pb2+ uptake by canola seedlings. Agrochimica 58: 91-102.
  35. Kaya C, Tuna L. Higgs D. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under waterstress conditions. J. Plant Nutr. 29: 1469-1480.
    CrossRef
  36. Si lva O, Lobato A, Avila F, Costa R, Oliveira Neto C, Santos Filho B, et al. 2012. Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant Soil Environ. 58: 481-486.
    CrossRef
  37. Samuels A, Glass A, Ehret D, Menzies J. 1993. The effects of silicon supplementation on cucumber fruit: changes in surface characteristics. Ann. Bot. 72: 433-440.
    CrossRef
  38. B ao-shan L, Chun-hui L, Li-jun F, Shu-chun Q, Min Y. 2004. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res. 15: 138-140.
    CrossRef
  39. Aga rie S, Agata W, Uchida H, Kubota F, Kaufman PB. 1996. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. J. Exp. Bot. 47: 655-660.
    Pubmed CrossRef
  40. Si lva ON, Lobato AKS, Ávila FW, Costa RCL, Oliveira Neto CF, Santos Filho BG, et al. 2012. Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant Soil Environ. 58: 481-486.
    CrossRef
  41. Al-aghabary K, Zhu Z. Shi Q. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 27: 2101-2115.
    CrossRef
  42. Kermani SA, Hokmabadi H. Jahromi MG. 2017. The evaluation of the effect of multiwall carbon nano tube (MWCNT) on in vitro proliferation and shoot tip necrosis of pistachio rootstock UCB-1 (Pistacia integrima× P. atlantica). J. Nuts 8: 49-59.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd