Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-5: 721~730

AuthorYunJung Lee, Yu Ra Ji, Sumi Lee, Mi-Jung Choi, Youngjae Cho
Place of dutyDepartment of Food Science and Biotechnology of Animal Resources, Konkuk University, Republic of Korea
TitleMicroencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-5
AbstractThe probiotic Lactobacillus acidophilus KBL409 was encapsulated with alginate (Al) and alginate-chitosan (Al/Chi) through extrusion method. The sizes and zeta potentials of microspheres were measured to confirm encapsulation. To evaluate the protective effect of microspheres against gastrointestinal fluids, all the samples were exposed to simulated gastric fluids (SGFs, pH 1.5) at 37°C for 1 or 2 h, followed by incubation with simulated intestinal fluids (SIFs, pH 6.5) for 2 h. The mucoadhesive ability of microspheres was evaluated using the intestinal epithelial cell line HT29-MTX. To extend the shelf-life of probiotics, lyoprotectants such as disaccharide and polysaccharide were mixed with free or encapsulated cells during the freeze-drying process. The size of the microspheres demonstrated a narrow distribution, while the zeta potentials of Al and Al/Chi-microspheres were −17.9 ± 2.3 and 20.4 ± 2.6 mV, respectively. Among all the samples, Al/Chi-encapsulated cells showed the highest survival rate even after exposure to SGF and SIF. The mucoadhesive abilities of Al and Al/Chi-microspheres were higher than 94%, whereas the free L. acidophilus showed 88.1% mucoadhesion. Ten percent of sucrose showed over 80% survival rate in free or encapsulated cells. Therefore, L. acidophilus encapsulated with Al and Al/Chi-microspheres showed higher survival rates after exposure to the gastrointestinal tract and better mucoadhesive abilities than the free cells. Also, sucrose showed the highest protective effect of L. acidophilus during the freeze-drying process.
Full-Text
Key_wordEncapsulation, extrusion, Lactobacillus acidophilus, intestinal survival, mucoadhesion, lycoprotectant
References
  1. S hi L E, L i ZH, Li D T, X u M, C hen HY, Zhang ZL, et al. 2013. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 117: 99-104.
    CrossRef
  2. Ooi LG, Liong MT. 2010. Cholesterol-lowering effects of probiotics and prebiotics: A Review of in vivo and in vitro findings. Int. J. Mol. Sci. 11: 2499-2522.
    Pubmed CrossRef Pubmed Central
  3. Knorr D. 1998. Technology aspects related to microorganisms in functional foods. Trends Food Sci. Technol. 9: 295-306.
    CrossRef
  4. Shahidi F, Han XQ. 1993. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33: 501-547.
    Pubmed CrossRef
  5. Muthukumarasamy P, Allan-Wojtas P, Holley RA. 2006. Stability of Lactobacillus reuteri in different types of microcapsules. J. Food Sci. 71: 20-24.
    CrossRef
  6. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. 2011. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12: 2834-2840.
    Pubmed CrossRef
  7. Krasaekoopt W, Bhandari B, Deeth H. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3-13.
    CrossRef
  8. Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME. 2015. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27: 15-25.
    CrossRef
  9. Silva MP, Tulini FL, Martins E, Penning M, Favaro-Trindade CS, Poncelet D. 2018. Comparison of extrusion and coextrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWTFood Sci. Technol. 89: 392-399.
    CrossRef
  10. Rinaudo M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57: 397-430.
    CrossRef
  11. Gombotz WR, Wee S. 1998. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267-285.
    CrossRef
  12. Chen S, Cao Y, Ferguson LR, Shu Q, Garg S. 2013. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J. Microencapsul. 30: 103-115.
    Pubmed CrossRef
  13. Khan NH, Korber DR, Low NH, Nickerson MT. 2013. Development of extrusion-based legume protein isolatealginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Res. Int. 54: 730-737.
    CrossRef
  14. Shori AB. 2017. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 24: 1-5.
    CrossRef
  15. Bhumkar DR, Pokharkar VB. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate:a technical note. Pharm. Dev. Technol. 7: E138-E143.
    Pubmed CrossRef Pubmed Central
  16. Minekus M, Alminger M, Alvito P, Balance S, Bohn T, Bourlieu C, et al. 2014. A standardized static in vitro digestion method suitable for food – an international consensus. Food Funct. 5: 1113-1124.
    Pubmed CrossRef
  17. Oomen G, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM. 2003. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 44: 281-287.
    Pubmed CrossRef
  18. Shinde T, Sun-Waterhouse D, Brooks J. 2014. Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: an aqueous and value-added delivery system using alginate. Food Bioproc. Tech. 7: 1581-1596.
    CrossRef
  19. Lotfipour F, Mirzaeei S, Maghsoodi M. 2012. Preparation and characterization of alginate and payllium beads containing Lactobacillus acidophilus. Sci. World J. 2012: 680108.
    Pubmed CrossRef Pubmed Central
  20. Klemmer KJ, Korber DR, Low NH, Nickerson MT. 2011. Pea protein-based capsules for probiotic and prebiotic delivery. Int. J. Food Sci. Technol. 46: 2248-2256.
    CrossRef
  21. Heidebach T, Forst P, Kulozik U. 2009. Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll. 23: 1670-1677.
    CrossRef
  22. Heidebach T, Forst P, Kulozik U. 2012. Microencapsulation of probiotic cells for food applications. CRC. Crit. Rev. Food Sci. Nutr. 52: 291-311.
    Pubmed CrossRef
  23. Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35-45.
    CrossRef
  24. Kirby BJ, Hasselbrink JEF. 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25: 187-202.
    Pubmed CrossRef
  25. Haidar ZS, Hamdy RC, Tabrizian M. 2008. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 29: 1207-1215.
    Pubmed CrossRef
  26. Chavarri M, Maranon I, Ares R, Ibanez FC, Marzo F, Villaran MC. 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142: 185-189.
    Pubmed CrossRef
  27. Ramos PE, Abrunhosa L, Pinheiro A, Cerqueira MA, Motta C, Castanheira I, et al. 2016. Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Res. Int. 90: 25-32.
    Pubmed CrossRef
  28. Sabikhi L, Babu R, Thompkinson DK, Kapila S. 2010. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioproc. Tech. 3: 586-593.
    CrossRef
  29. Zanjani MAK, Tarzi BG, Sharifan A, Mohammadi N. 2014. Microencapsulation of probiotics by calcium alginategelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran. J. Pharm. Res. 13: 843-852.
  30. Murata Y, Toniwa S, Miyamoto E, Kawahima S. 1999. Preparation alginate gel beads containing chitosan nicotinic acid salt and the functions. Eur. J. Pharm. Biopharm. 48: 49-52.
    CrossRef
  31. Koo S, Cho Y, Huh C, Baek Y, Park J. 2001. Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J. Microbiol. Biotechnol. 11: 376-383.
  32. Gagnon M, Berner AZ, Chervet N, Chassard C, Lactoix C. 2013. Comparison of the Caco-2, HT-29 and the mucussecreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J. Microbiol. Methods 94:274-279.
    Pubmed CrossRef
  33. Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. 2016. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28: 9486-9490.
    Pubmed CrossRef Pubmed Central
  34. Rodklongtan A, La-ongkham O, Nitisinprasert S, Chitprasert P. 2014. Enhancement of Lactobacillus reuteri KUB-AC5 survival in broiler gastrointestinal tract by microencapsulation with alginate–chitosan semi-interpenetrating polymer networks. J. Appl. Microbiol. 117: 227-238.
    Pubmed CrossRef
  35. He C, Shiwei C, Chuanna L, Guowei S. 2015. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying. Prep. Biochem. Biotech. 45: 463-475.
    Pubmed CrossRef
  36. Xiangchen M, Catherine SS, Gerald FF, Charles D, Ross P. 2008. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106: 1406-1416.
    CrossRef
  37. Mimoza BS, Monika M, Sharareh S, Frank MU, Helmut V. 2014. Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. LWT-Food Sci. Technol. 57: 276-282.
    CrossRef
  38. Maria S, Ilkka V, Liisa N, Anu V, Jaana M. 2006. Fibres as carries for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. Int. J. Food Microbiol. 112: 171-178.
    Pubmed CrossRef
  39. Ananta E, Volkert M. Knorr D. 2005. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 15: 399-409.
    CrossRef
  40. Susanna R, Pirjo R. 2010. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12.
    CrossRef
  41. Heckly RJ. 1985. Principles of preserving bacteria by freezedrying. Dev. Ind. Microbiol. 26: 379-395.
  42. Carpenter JF, Prestrelski SJ, Arakawa T. 1993. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303: 456-464.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd