Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-4: 562~570

AuthorDong-Hyun Jung, Dong-Ho Seo, Ji-Hae Park, Myo-Jung Kim, Nam-In Baek, Cheonseok Park
Place of dutyGraduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Republic of Korea
TitleEnzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-4
Abstractβ-Glucosylglycerol (β-GG) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, β-GG and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae β-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of β-GGs [β-D-glucopyranosyl-(1→1/3)-D-glycerol and β-D-glucopyranosyl- (1→2)-D-glycerol]. In the second transglycosylation reaction, β-D-glucopyranosyl-(1 → 1/3)-Dglycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of α-Dglucopyranosyl-( 1→4)-β-D-glucopyranosyl-(1→1/3)-D-glycerol and 28% of α-D-maltopyranosyl- (1→4)-β-D-glucopyranosyl-(1→1/3)-D-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of β-GG was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.
Full-Text
Supplemental Data
Key_wordGlycerol glycosides, β-glycosidase, amylosucrase, transglycosylation
References
  1. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, et al. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87:223-226.
    CrossRef
  2. Kaneda M, Mizutani K, Takahashi Y, Kurono G, Nishikawa Y. 1974. Lilioside A and B, two new glycerol glucosides isolated from Lilium longiflorum T hunb. Tetrahedron Lett. 15:3937-3940.
    CrossRef
  3. Kaneda M, Mizutani K, Tanaka K. 1982. Lilioside C, a glycerol glucoside from Lilium lancifolium. Phytochemistry 21: 891-893.
    CrossRef
  4. Curatolo W. 1987. The physical properties of glycolipids. Biochim. Biophys. Acta-Rev. 906: 111-136.
    CrossRef
  5. Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1996. 1-O-, 2-O-and 3-O-β-glycosyl-snglycerols:Structure-anti-tumor-promoting activity relationship. Bioorg. Med. Chem. Lett. 6: 1187-1190.
    CrossRef
  6. Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1998. Inhibitory effects of fatty acid monoesters of 2-O-β-D-glucosylglycerol on Epstein–Barr virus activation. Cancer Lett. 123: 83-86.
    CrossRef
  7. Colombo D, Compostella F, Ronchetti F, Scala A, Toma L, Tokuda H, et al. 1999. Chemoenzymatic synthesis and antitumor promoting activity of 6’-and 3-esters of 2-O-β-Dglucosylglycerol. Bioorg. Med. Chem. 7: 1867-1871.
    CrossRef
  8. Murakami N, Imamura H, Sakakibara J, Yamada N. 1990. Seven new monogalactosyl diacylglycerols isolated from the axenic cyanobacterium Phormidium tenue. Chem. Pharm. Bull.38: 3497-3499.
    CrossRef
  9. Shirahashi H, Murakami N, Watanabe M, Nagatsu A, Sakakibara J, Tokuda H, et al. 1993. Isolation and identification of anti-tumor-promoting principles from the fresh-water cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 41:1664-1666.
    Pubmed CrossRef
  10. Murakami A, Nakamura Y, Koshimizu K, Ohigashi H. 1995. Glyceroglycolipids from Citrus hystrix, a traditional herb in Thailand, potently inhibit the tumor-promoting activity of 12-O-tetradecanoylphorbol 13-acetate in mouse skin. J. Agric. Food Chem. 43: 2779-2783.
    CrossRef
  11. Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, et al. 1995. Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40: 1433-1437.
    CrossRef
  12. Boltje TJ, Buskas T, Boons G-J. 2009. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1: 611-622.
    CrossRef
  13. Marinone Albini F, Murelli C, Patritti G, Rovati M. 1994. A simple synthesis of glucosyl glycerols. Synth. Commun. 24:1651-1661.
    CrossRef
  14. Wickberg B. 1958. Synthesis of 1-glyceritol D-galactopyranosides. Acta Chem. Scand. 12: 1187-1201.
    CrossRef
  15. Bårström M, Bengtsson M, Blixt O, Norberg T. 2000. New derivatives of reducing oligosaccharides and their use in enzymatic reactions: efficient synthesis of sialyl Lewis a and sialyl dimeric Lewis x glycoconjugates. Carbohydr. Res. 328:525-531.
    CrossRef
  16. Zeng X, Uzawa H. 2005. Convenient enzymatic synthesis of a p-nitrophenyl oligosaccharide series of sialyl N-acetyllactosamine, sialyl Lex and relevant compounds. Carbohydr. Res. 340: 2469-2475.
    CrossRef
  17. Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct.Biol. 7: 637-644.
    CrossRef
  18. Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R. 2003. Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme Microb. Technol. 33: 3-11.
    CrossRef
  19. Park N-Y, Baek N-I, Cha J, Lee S-B, Auh J-H, Park C-S. 2005. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae β-glycosidase. Carbohydr. Res. 340: 1089-1096.
    CrossRef
  20. Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. 2018. Amylosucrase as a transglucosylation tool: from molecular features to bioengineering applications. Biotechnol. Adv. 36:1540-1552.
    Pubmed CrossRef
  21. Jung D-H, Jung J-H, Seo D-H, Ha S-J, Kweon D-K, Park C-S.2013. One-pot bioconversion of sucrose to trehalose using enzymatic sequential reactions in combined cross-linked enzyme aggregates. Bioresour. Technol. 130: 801-804.
    CrossRef
  22. Cho H-K, Kim H-H, Seo D-H, Jung J-H, Park J-H, Baek N-I, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253.
    CrossRef
  23. Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344:1612-1619.
    Pubmed CrossRef
  24. Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, et al. 1999. Structure of raw starch-digesting Bacillus cereus β-amylase complexed with maltose. Biochemistry. 38:7050-7061.
    Pubmed CrossRef
  25. Seo D-H, Jung J-H, Ha S-J, Cho H-K, Jung D-H, Kim T-J, et al. 2012. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197.
    CrossRef
  26. De Roode M, Peters SW, Franssen MC, Van Padt AD, De Groot A, Boom RM. 2001. Optimization of production and downstream processing of the almond β-glucosidase-mediated glucosylation of glycerol. Biotechnol. Bioeng. 72: 568-572.
    CrossRef
  27. Hinz SW, Verhoef R, Schols HA, Vincken J-P, Voragen AG.2005. Type I arabinogalactan contains β-D-Galp-(1→3)-β-DGalp structural elements. Carbohydr. Res. 340: 2135-2143.
    CrossRef
  28. Jeong J-W, Seo D-H, Jung J-H, Park J-H, Baek N-I, Kim M-J, et al. 2014. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus K T . Appl. Biochem. Biotechnol. 173: 904-917.
    CrossRef
  29. Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, et al. 2001. Original synthesis of linear, branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 2001: 875-896.
    CrossRef
  30. Seo S, Tomita Y, Tori K, Yoshimura Y. 1978. Determination of the absolute configuration of a secondary hydroxy group in a chiral secondary alcohol using glycosidation shifts in carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 100: 3331-3339.
    CrossRef
  31. Suhr R, Scheel O, Thiem J. 1998. Synthesis of glycosyl glycerols and related glycolipids. J. Carbohydr. Chem. 17: 937-968.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd