Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-5: 776~784

AuthorHye-Rim Jung, Ju-Hee Lee, Yu-Mi Moon, Tae-Rim Choi, Su-Yeon Yang, Hun-Suk Song, Jun-Young Park, Ye-Lim Park, Shashi Kant Bhatia, Ranjit Gurav, Byoung Joon Ko, Yung-Hun Yang
Place of dutyDepartment of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
TitleIncreased Tolerance to Furfural by Introduction of Polyhydroxybutyrate Synthetic Genes to Escherichia coli
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-5
AbstractPolyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.
Full-Text
Key_wordPolyhydroxybutyrate, furfural, resistance, Escherichia coli, lignocellulose hydrolysate
References
  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489.
    Pubmed CrossRef
  2. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26: 169-172.
    Pubmed CrossRef
  3. Sims RE, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580.
    Pubmed CrossRef
  4. Brodin M, Vallejos M, Opedal MT, Area MC, ChingaCarrasco G. 2017. Lignocellulosics as sustainable resources for production of bioplastics-a review. J. Clean Prod. 162:646-664.
    CrossRef
  5. Sharma HK, Xu C, Qin W. 2017. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste and Biomass Valorization. 1-17.
    CrossRef
  6. Carroll A, Somerville C. 2009. Cellulosic biofuels. Annu. Rev. Plant Biol. 60: 165-182.
    Pubmed CrossRef
  7. Weijde Tvd, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, et al. 2013. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci. 4: 107.
    Pubmed CrossRef Pubmed Central
  8. Bhatia SK, G urav R , Cho i T-R, J ung H-R, Y ang S-Y, M o o n Y-M, et al. 2019. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271: 306-315.
    Pubmed CrossRef
  9. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. 48: 3713-3729.
    CrossRef
  10. Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.
    CrossRef
  11. Mills TY, Sandoval NR, Gill RT. 2009. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2: 26.
    Pubmed CrossRef Pubmed Central
  12. Saha BC. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291.
    Pubmed CrossRef
  13. Gorsich S, Dien B, Nichols N, Slininger P, Liu Z, Skory C. 2006. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71: 339-349.
    Pubmed CrossRef
  14. Barciszewski J, Siboska GE, Pedersen BO, Clark BF, Rattan SI. 1997. A mechanism for the in vivo formation of N6furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett. 414: 457-460.
    CrossRef
  15. Palmqvist E, Hahn-Hägerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25-33.
    CrossRef
  16. Zaldivar J, Martinez A, Ingram LO. 2000. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 68: 524-530.
    CrossRef
  17. Song H-S, Jeon J-M, Kim H-J, Bhatia SK, Sathiyanarayanan G, Kim J, et al. 2017. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour. Technol. 245: 1430-1435.
    Pubmed CrossRef
  18. Seo H-M, Jeon J-M, Lee JH, Song H-S, Joo H-B, Park S-H, et al. 2016. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J. Ind. Microbiol. Biotechnol. 43: 37-44.
    Pubmed CrossRef
  19. Wang X, M iller E, Y o mano L , Zhang X, S hanmugam K , Ingram L. 2011. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl. Environ. Microbiol. 77: 5132-5140.
    Pubmed CrossRef Pubmed Central
  20. Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, et al. 2013. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc. Natl. Acad. Sci. USA 110: 4021-4026.
    Pubmed CrossRef Pubmed Central
  21. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj, II, Steinbuchel A. 2 013. P HA r ecovery f ro m bio mass. Biomacromolecules 14: 2963-2972.
    Pubmed CrossRef
  22. Steinbuchel A, Fuchtenbusch B. 1998. Bacterial and other biological systems for polyester production. Trends. Biotechnol. 16: 419-427.
    CrossRef
  23. Wen Q, Chen Z, Tian T, Chen W. 2010. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J. Environ. Sci. 22: 1602-1607.
    CrossRef
  24. Johnson K, Kleerebezem R, van Loosdrecht MC. 2010. Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Res. 44: 2141-2152.
    Pubmed CrossRef
  25. Ahn J, Jho EH, Nam K. 2015. Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Environ. Eng. Res. 20: 246-253.
    CrossRef
  26. Sudesh K, Abe H, Doi Y. 2000. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25: 1503-1555.
    CrossRef
  27. Du C, Sabirova J, Soetaert W, Lin C. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14-25.
    CrossRef
  28. Broeren M. 2013. Production of Bio-ethylene−Technology Brief. IEA-ETSAP & IRENA, International Renewable Energy Agency.
  29. Cesário MT, Raposo RS, d e Almeida MCM, v an K eulen F, Ferreira BS, da Fonseca MMR. 2014. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. N. Biotechnol. 31: 104-113.
    Pubmed CrossRef
  30. Yu J, Stahl H. 2008. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour. Technol. 99:8042-8048.
    Pubmed CrossRef
  31. Silva L, Taciro M, Ramos MM, Carter J, Pradella J, Gomez J. 2004. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind. Microbiol. Biotechnol. 31: 245-254.
    Pubmed CrossRef
  32. Dietrich D, Illman B, Crooks C. 2013. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Res. Notes 6: 219.
    Pubmed CrossRef Pubmed Central
  33. Wang W, Yang S, Hunsinger GB, Pienkos PT, Johnson DK. 2014. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator. Front. Microbiol. 5: 247.
    CrossRef
  34. Dietrich K, Dumont M-J, Schwinghamer T, Orsat V, Del Rio LF. 2017. Model study to assess softwood hemicellulose hydrolysates as the carbon source for PHB production in Paraburkholderia sacchari IPT 101. Biomacromolecules 19: 188-200.
    Pubmed CrossRef
  35. Yang YH, Brigham C, Song E, Jeon JM, Rha C, Sinskey A. 2012. Biosynthesis of poly (3-hydroxybutyrate-co-3hydroxyvalerate) containing a predominant amount of 3hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J. Appl. Microbiol. 113: 815-823.
    Pubmed CrossRef
  36. Jeon JM, Kim HJ, Bhatia SK, Sung C, Seo HM, Kim JH, et al. 2017. Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioproc. Biosyst. Eng. 40: 781-789.
    Pubmed CrossRef
  37. Mezzina MP, Wetzler DE, Almeida A, Dinjaski N, Prieto MA, Pettinari M J. 2015. A p hasin with extra t alents: a po lyhydroxyalkanoate granule-associated protein has chaperone activity. Environ. Microbiol. 17: 1765-1776.
    Pubmed CrossRef
  38. Phylactides M. 1997. Molecular biology series 3. Tools of molecular biology: gene cloning. Br. J. Hosp. Med. 57: 49-50.
  39. Braunegg G, Sonnleitner B, Lafferty R. 1978. A rapid gas chromatographic method for the determination of poly-βhydroxybutyric acid in microbial biomass. Appl. Microbiol. Biotechnol. 6: 29-37.
    CrossRef
  40. Bhatia SK, Kim J, Song H-S, Kim HJ, Jeon J-M, Sathiyanarayanan G, et al. 2017. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour. Technol. 233: 99-109.
    Pubmed CrossRef
  41. Zaldivar J, Ingram LO. 1999. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66: 203-210.
    CrossRef
  42. Song HS, Jeon JM, Choi YK, Kim JY, Kim W, Yoon JJ, et al. 2017. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli. J. Microbiol.Biotechnol. 27: 2165-2172.
    Pubmed CrossRef
  43. Nieves LM, Panyon LA, Wang X. 2015. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front. Bioeng. Biotechnol. 3: 17.
    Pubmed CrossRef Pubmed Central
  44. Moon J, Liu ZL. 2015. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae. Yeast 32: 399-407.
    Pubmed CrossRef
  45. Han M-J, Yoon SS, Lee SY. 2001. Proteome analysis of metabolically engineeredescherichia coli producing poly (3hydroxybutyrate). J Bacteriol. 183: 301-308.
    Pubmed CrossRef Pubmed Central
  46. Wang Q, Yu H, Xia Y, Kang Z, Qi Q. 2009. Complete PHB mobilization in Escherichia coli enhances the s tress to lerance:a potential biotechnological application. Microb. Cell Fact. 8: 47.
    Pubmed CrossRef Pubmed Central
  47. James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R. 1999. Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl. Environ Molecular biology series 3. Tools of molecular biology: gene cloning. Microbiol. 65: 822-827.
  48. Yang YH, Brigham C, Willis L, Rha C, Sinskey A. 2011. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnology Lett. 33: 937-942.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd