Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-5: 765~775

AuthorGuozeng Wang, Meng Luo, Juan Lin, Yun Lin, Renxiang Yan, Wolfgang R. Streit, Xiuyun Ye
Place of dutyCollege of Biological Science and Engineering, Fuzhou University, P. R. China,Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg,Germany
TitleA New Extremely Halophilic, Calcium-Independent and Surfactant-Resistant Alpha-Amylase from Alkalibacterium sp. SL3
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-5
AbstractA new α-amylase-encoding gene (amySL3) of glycoside hydrolase (GH) family 13 was identified in soda lake isolate Alkalibacterium sp. SL3. The deduced AmySL3 shares high identities (82–98%) with putative α-amylases from the genus Alkalibacterium, but has low identities (<53%) with functionally characterized counterparts. amySL3 was successfully expressed in Escherichia coli, and the recombinant enzyme (rAmySL3) was purified to electrophoretic homogeneity. The optimal temperature and pH of the activity of the purified rAmySL3 were determined to be 45°C and pH 7.5, respectively. rAmySL3 was found to be extremely halophilic, showing maximal enzyme activity at a nearly saturated concentration of NaCl. Its thermostability was greatly enhanced in the presence of 4 M NaCl, and it was highly stable in 5 M NaCl. Moreover, the enzyme did not require calcium ions for activity, and was strongly resistant to a range of surfactants and hydrophobic organic solvents. The major hydrolysis products of rAmySL3 from soluble starch were maltobiose and maltotriose. The high ratio of acidic amino acids and highly negative electrostatic potential surface might account for the halophilic nature of AmySL3. The extremely halophilic, calcium-independent, and surfactant-resistant properties make AmySL3 a promising candidate enzyme for both basic research and industrial applications.
Full-Text
Key_wordα-Amylase, glycoside hydrolase family 13, halophilic, surfactant-resistant, calcium-independent, alkalibacterium
References
  1. Guzman-Maldonado H, Paredes-Lopez O. 1995. Amylolytic enzymes and products derived from starch: a review. Crit. Rev. Food Sci. Nutr. 35: 373-403.
    Pubmed CrossRef
  2. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137-155.
    CrossRef
  3. MacGregor EA. 1988. Alpha-amylase structure and activity. J. Protein Chem. 7: 399-415.
    Pubmed CrossRef
  4. Janecek S, Svensson B, MacGregor EA. 2014. AlphaAmylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 71: 1149-1170.
    Pubmed CrossRef
  5. Mikawlrawng K. 2016. Aspergillus in biomedical research, pp. 229–242. In Gupta VK (ed.), New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, Amsterdam.
    CrossRef
  6. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31 (Pt 2): 135-152.
    Pubmed CrossRef
  7. de Souza PM, de Oliveira Magalhaes P. 2010. Application of microbial alpha-amylase in industry – A review. Braz. J. Microbiol. 41: 850-861.
    Pubmed CrossRef Pubmed Central
  8. Zhang Q, Han Y, Xiao H. 2017. Microbial alpha-amylase: A biomolecular overview. Process Biochem. 53: 88-101.
    CrossRef
  9. Kambourova M. 2017. Recent advances in extremophilic alpha-amylases, pp. 99-113. In Sani RK, Krishnaraj RN (eds.), Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy, Springer International Publishing, Cham.
    CrossRef
  10. van den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213-218.
    CrossRef
  11. Cipolla A, Delbrassine F, Da Lage JL, Feller G. 2012. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94: 1943-1950.
    Pubmed CrossRef
  12. D'Amico S, Marx JC, Gerday C, Feller G. 2003. Activitystability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896.
    Pubmed CrossRef
  13. Kumar S, Grewal J, Sadaf A, Hemamalini R, Khare SK. 2016 Halophiles as a source of polyextremophilic alpha-amylase for industrial applications. AIMS Microbiol. 2: 1-26
    CrossRef
  14. Wang G, Wang Q, Lin X, Ng TB, Yan R, Lin J, et al. 2016. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci. Rep. 6: 19494.
    Pubmed CrossRef Pubmed Central
  15. Wang G, W u J, Y an R , Lin J, Ye X. 2016. A n ov el m ultidomain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front. Microbiol. 7: 2120.
    CrossRef
  16. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.
    Pubmed CrossRef Pubmed Central
  17. Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H. 2001. Crystal structure of Bacillus stearothermophilus alphaamylase:possible factors determining the thermostability. J. Biochem. 129: 461-468.
    Pubmed CrossRef
  18. Wu S, Zhang Y. 2008. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72: 547-556.
    Pubmed CrossRef Pubmed Central
  19. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  20. Alikhajeh J, Khajeh K, Ranjbar B, Naderi-Manesh H, Lin YH, Liu E, et al. 2010. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: implications for thermal stability. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66: 121-129.
    Pubmed CrossRef Pubmed Central
  21. Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M. 2011. Salt-dependent thermo-reversible alphaamylase:cloning and characterization of halophilic alphaamylase from moderately halophilic bacterium, Kocuria varians. Appl. Microbiol. Biotechnol. 89: 673-684.
    Pubmed CrossRef
  22. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS. 2013. Microbiology of Lonar Lake and other soda lakes. ISME J. 7: 468-476.
    Pubmed CrossRef Pubmed Central
  23. Ji S, Jian-ting C, Yan-hong W, Matsumoto R, Qing-yi S. 2001. Paleoclimatic changes in Dabusu Lake. Chin. J. Oceanol. Limnol. 19: 91-96.
    CrossRef
  24. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. 2005. Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85-89.
    Pubmed CrossRef
  25. Hutcheon GW, Vasisht N, Bolhuis A. 2005. Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487-495.
    Pubmed CrossRef
  26. Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA. 2013. Biochemical characterization of an extracellular polyextremophilic alpha-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17: 677-687.
    Pubmed CrossRef
  27. Qin Y, Huang Z, Liu Z. 2014. A novel cold-active and salttolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18: 271-281.
    Pubmed CrossRef
  28. Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR. 2007. Intrinsic halotolerance of the psychrophilic alphaamylase from Pseudoalteromonas haloplanktis. Extremophiles 11: 505-515.
    Pubmed CrossRef
  29. Wang X, Kan G, Ren X, Yu G, Shi C, Xie Q, et al. 2018. Molecular cloning and characterization of a novel alphaamylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 and its primary application in detergent. Biomed. Res. Int. 2018: 3258383.
    Pubmed CrossRef Pubmed Central
  30. Feller G. 2013. Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013: 512840.
    Pubmed CrossRef Pubmed Central
  31. Li Z, Wu J, Zhang B, Wang F, Ye X, Huang Y, et al. 2015. AmyM, a novel maltohexaose-forming alpha-amylase from Corallococcus sp. strain EGB. Appl. Environ. Microbiol. 81:1977-1987.
    Pubmed CrossRef Pubmed Central
  32. Karan R, Capes MD, Dassarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8: 4.
    Pubmed CrossRef Pubmed Central
  33. Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, et al. 2016. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int. J. Biol. Macromol. 92: 174-184.
    Pubmed CrossRef
  34. Kiran KK, Chandra TS. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023-1031.
    Pubmed CrossRef
  35. Shafiei M, Ziaee A-A, Amoozegar MA. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694-699.
    CrossRef
  36. Shafiei M, Ziaee AA, Amoozegar MA. 2011. Purification and characterization of an organic-solvent-tolerant halophilic alpha-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 38: 275-281.
    Pubmed CrossRef
  37. Sinha R, Khare SK. 2014. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front. Microbiol. 5: 165.
    Pubmed CrossRef Pubmed Central
  38. Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T. 1994. Cloning, expression, and nucleotide sequence of the alphaamylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J. Bacteriol. 176: 5131-5134.
    Pubmed CrossRef Pubmed Central
  39. Onodera M, Yatsunami R, Tsukimura W, Fukui T, Nakasone K, Takashina T, et al. 2013. Gene analysis, expression, and characterization of an intracellular alphaamylase from the extremely halophilic archaeon Haloarcula japonica. Biosci. Biotechnol. Biochem. 77: 281-288.
    Pubmed CrossRef
  40. Wei Y, Wang X, Liang J, Li X, Du L, Huang R. 2013. Identification of a halophilic alpha-amylase gene from Escherichia coli JM109 and characterization of the recombinant enzyme. Biotechnol. Lett. 35: 1061-1065.
    Pubmed CrossRef
  41. Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, et al. 2000. The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146 (Pt 4): 861-868.
    Pubmed CrossRef
  42. Mijts BN, Patel BK. 2002. Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148: 2343-2349.
    Pubmed CrossRef
  43. Feller G, Lonhienne T, Deroanne C, Libioulle C, van Beeumen J, Gerday C. 1992. Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267: 5217-5221.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd