Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-3: 401~409

AuthorSinyeon Kim, Youngshin Kim, Sung Ho Yoon
Place of dutyKonkuk University, Republic of Korea
TitleOverexpression of YbeD in Escherichia coli Enhances Thermotolerance
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-3
AbstractHeat-resistant microbial hosts are required for bioprocess development using high cell density cultivations at the industrial scale. We report that the thermotolerance of Escherichia coli can be enhanced by overexpressing ybeD, which was known to encode a hypothetical protein of unknown function. In the wild-type E. coli BL21(DE3), ybeD transcription level increased over five-fold when temperature was increased from 37°C to either 42°C or 46°C. To study the function of ybeD, a deletion strain and an overexpression strain were constructed. At 46°C, in comparison to the wild type, the ybeD-deletion reduced cell growth half-fold, and the ybeDoverexpression promoted cell growth over two-fold. The growth enhancement by ybeDoverexpression was much more pronounced at 46°C than 37°C. The ybeD-overexpression was also effective in other E. coli strains of MG1655, W3110, DH10B, and BW25113. These findings reveal that ybeD gene plays an important role in enduring high-temperature stress, and that ybeD-overexpression can be a prospective strategy to develop thermotolerant microbial hosts.
Full-Text
Supplemental Data
Key_wordybeD, Escherichia coli, Heat shock protein, Thermotolerance
References
  1. Ezemaduka AN, Yu J, Shi X, Zhang K, Yin CC, Fu X, et al. 2014. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50oC conceivably by maintaining cell envelope integrity. J. Bacteriol. 196: 2004-2011.
    Pubmed CrossRef Pubmed Central
  2. Liu D, Lu Z, Mao Z, Liu S. 2009. Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr. Microbiol. 58: 129-133.
    Pubmed CrossRef
  3. Gasser B, Saloheimo M, Rinas U, Dragosits M, RodriguezCarmona E, Baumann K, et al. 2008. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell Fact. 7: 11.
    Pubmed CrossRef Pubmed Central
  4. Zhang X, Liu Y, Genereux JC, Nolan C, Singh M, Kelly JW. 2014. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli. ACS Chem. Biol. 9: 1945-1949.
    Pubmed CrossRef Pubmed Central
  5. Arsene F, Tomoyasu T, Bukau B. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55: 3-9.
    CrossRef
  6. Gross CA. 1996. Function and regulation of the heat shock proteins, pp. 1382-1399. In Neidhardt FC (ed.), Escherichia coli and Salmonella, Ed. ASM Press, Washington.
  7. Martinez-Alonso M, Garcia-Fruitos E, Ferrer-Miralles N, Rinas U, Villaverde A. 2010. Side effects of chaperone gene co-expression in recombinant protein production. Microb. Cell Fact. 9: 64.
    Pubmed CrossRef Pubmed Central
  8. Kolaj O, Spada S, Robin S, Wall JG. 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8: 9.
    Pubmed CrossRef Pubmed Central
  9. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and promoter analysis of the E. coli heatshock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20: 1776-1789.
    Pubmed CrossRef Pubmed Central
  10. Shimada T, Tanaka K, Ishihama A. 2017. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PLoS One 12:e0179181.
    Pubmed CrossRef Pubmed Central
  11. Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman F S. 2016. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 44: D663-668.
    Pubmed CrossRef Pubmed Central
  12. Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, et al. 2008. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9: 102.
    Pubmed CrossRef Pubmed Central
  13. Kozlov G, Elias D, Semesi A, Yee A, Cygler M, Gehring K. 2004. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains. J. Bacteriol. 186: 8083-8088.
    Pubmed CrossRef Pubmed Central
  14. Yoon SH, Jeong H, Kwon S-K, Kim JF. 2009. Genomics, biological features, and biotechnological applications of Escherichia coli B: “Is B for better?!”, pp. 1-17. Systems Biology and Biotechnology of Escherichia coli, Ed. Springer, Berlin, Germany
  15. Choi JH, Keum KC, Lee SY. 2006. Production of recombinant proteins by high cell density culture of Escherichia coli Chem. Eng. Sci. 61: 876-885.
    CrossRef
  16. Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130.
    CrossRef
  17. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.
    Pubmed CrossRef Pubmed Central
  18. Kim SK, Lee DH, Kim OC, Kim J F , Yoon SH. 2017. Tunable control of an Escherichia coli expression system for the overproduction of membrane proteins by titrated expression of a mutant lac repressor. ACS Synth. Biol. 6: 1766-1773.
    Pubmed CrossRef
  19. Kim S, Jeong H, Kim EY, Kim JF, Lee SY, Yoon SH. 2017. Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Res. 45: 5285-5293.
    Pubmed CrossRef Pubmed Central
  20. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25: 402-408.
    Pubmed CrossRef
  21. Schagger H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1: 16-22.
    Pubmed CrossRef
  22. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. 2017. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45: D507-d516.
    Pubmed CrossRef Pubmed Central
  23. Durfee T, Nelson R, Baldwin S, Plunkett G, 3rd, Burland V, Mau B, et al. 2008. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190: 2597-2606.
    Pubmed CrossRef Pubmed Central
  24. Bukau B, Walker GC. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171:2337-2346.
    Pubmed CrossRef Pubmed Central
  25. Teleha MA, Miller AC, Larsen RA. 2013. Overexpression of the Escherichia coli TolQ protein leads to a null-FtsN-like division phenotype. Microbiologyopen 2: 618-632.
    Pubmed CrossRef Pubmed Central
  26. Herendeen SL, VanBogelen RA, Neidhardt FC. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139: 185-194.
    Pubmed Pubmed Central
  27. Ron EZ, Davis BD. 1971. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J. Bacteriol. 107: 391-396.
    Pubmed Pubmed Central
  28. Ron EZ, Shani M. 1971. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J. Bacteriol. 107: 397-400.
    Pubmed Pubmed Central
  29. Jordan SW, Cronan JE, Jr. 2003. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein:protein transferase. J. Bacteriol. 185: 1582-1589.
    Pubmed CrossRef Pubmed Central
  30. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006 0008.
  31. Fayet O, Ziegelhoffer T, Georgopoulos C. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171: 1379-1385.
    Pubmed CrossRef Pubmed Central
  32. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, et al. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755-765.
    CrossRef
  33. Wick LM, Egli T. 2004. Molecular components of physiological stress responses in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 1-45.
    Pubmed CrossRef
  34. Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, et al. 2007. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics 6:1527-1550.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd