Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-8: 1221~1229

AuthorWenyong Ding, Houli Zhang, Yuefei Xu, Li Ma, Wenli Zhang
Place of dutyBiochemistry and Molecular Biology Department, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, P.R. China
TitleProteomic and Morphologic Evidence for Taurine-5-Bromosalicylaldehyde Schiff Base as an Efficient Anti-Mycobacterial Drug
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-8
AbstractMycobacterium tuberculosis, a causative pathogen of tuberculosis (TB), still threatens human health worldwide. To find a novel drug to eradicate this pathogen, we tested taurine-5- bromosalicylaldehyde Schiff base (TBSSB) as an innovative anti-mycobacterial drug using Mycobacterium smegmatis as a surrogate model for M. tuberculosis. We investigated the antimicrobial activity of TBSSB against M. smegmatis by plotting growth curves, examined the effect of TBSSB on biofilm formation, observed morphological changes by scanning electron microscopy and transmission electron microscopy, and detected differentially expressed proteins using two-dimensional gel electrophoresis coupled with mass spectrometry. TBSSB inhibited mycobacterial growth and biofilm formation, altered cell ultrastructure and intracellular content, and inhibited cell division. Furthermore, M. smegmatis adapted itself to TBSSB inhibition by regulating the metabolic pathways and enzymatic activities of the identified proteins. NDMA-dependent methanol dehydrogenase, NAD(P)H nitroreductase, and amidohydrolase AmiB1 appear to be pivotal factors to regulate the M. smegmatis survival under TBSSB. Our dataset reinforced the idea that Schiff base-taurine compounds have the potential to be developed as novel anti-mycobacterial drugs.
Full-Text
Supplemental Data
Key_wordMycobacterium, tuberculosis, taurine-5-bromosalicylaldehyde Schiff base, morphology, cell wall, two dimensional gel electrophoresis
References
  1. Organization WH. 2018. GLOBAL TUBERCULOSIS REPORT 2018. http://www.who.int/tb/publications/global_report/en/.
  2. Rîmbu C, Danac R, Pui A. 2014. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands. Chem. Pharm. Bull. (Tokyo) 62: 12-15.
    Pubmed CrossRef
  3. Chaudhary NK, Mishra P. 2017. Metal complexes of a novel schiff base based on penicillin: characterization, molecular modeling, and antibacterial activity study. Bioinorg. Chem. Appl. 2017: 6927675.
    Pubmed CrossRef Pubmed Central
  4. Siddappa K, Mayana NS. 2014. Synthesis, spectroscopic characterization, and biological evaluation studies of 5bromo-3-(((hydroxy-2-methylquinolin-7-yl)methylene)hydrazono) indolin-2-one and its metal (II) complexes. Bioinorg. Chem. Appl. 2014: 483282.
    Pubmed CrossRef Pubmed Central
  5. Andiappan K, Sanmugam A, Deivanayagam E, Karuppasamy K, Kim HS, Vikraman D. 2018. In vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes. Sci. Rep. 8(1): 3054.
    Pubmed CrossRef Pubmed Central
  6. Zhang X, Bi C, Fan Y, Cui Q, Chen D, Xiao Y, et al. 2008. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. Int. J. Mol. Med. 22: 677-682.
  7. Li L, Guo Q, Dong J, Xu T, Li J. 2013. DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper(II) complex with taurine Schiff base and 1,10-phenanthroline. J. Photochem. Photobiol. B. 125: 56-62.
    Pubmed CrossRef
  8. Yuan R, Diao Y, Zhang W, Lin Y, Huang S, Zhang H, et al. 2014. In vitro activity of taurine-5-bromosalicylaldehyde Schiff base against planktonic and biofilm cultures of methicillinresistant Staphylococcus aureus. J. Microbiol. Biotechnol. 24: 1059-1064.
    Pubmed CrossRef
  9. Zhang W, Jones VC, Scherman MS, Mahapatra S, Crick D, Bhamidi S, et al. 2008. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase. Int. J. Biochem. Cell Biol. 40: 2560-2571.
    Pubmed CrossRef Pubmed Central
  10. Chen Y, Xu Y, Yang S, Li S, Ding W, Zhang W. 2019. Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. MicrobiologyOpen 3: e819.
    Pubmed CrossRef
  11. Yang S, Xu Y, Wang Y, Ren F, Li S, Ding W, et al. 2018. The biological properties and potential interacting proteins of DalanylD-alanine ligase A from Mycobacterium tuberculosis. Molecules 23: E324.
    Pubmed CrossRef Pubmed Central
  12. Marland Z, Beddoe T, Zaker-Tabrizi L, Coppel RL, Crellin PK, Rossjohn J. 2005. Expression, purification, crystallization and preliminary X-ray diffraction analysis of an essential lipoprotein implicated in cell-wall biosynthesis in Mycobacteria. Acta crystallogr. Sec. F, Struct. Biol. Cryst. Commun. 61: 1081-1083.
    Pubmed CrossRef Pubmed Central
  13. Pan F, Jackson M, Ma Y, McNeil M. 2001. Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J. Bacteriol. 183: 3991-3998.
    Pubmed CrossRef Pubmed Central
  14. Kieser KJ, Baranowski C, Chao MC, Long JE, Sassetti CM, Waldor MK, et al. 2015. Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc. Nat. Acad. Sci. USA 112: 13087-13092.
    Pubmed CrossRef Pubmed Central
  15. Rombouts Y, Brust B, Ojha AK, Maes E, Coddeville B, ElassRochard E, et al. 2012. Exposure of mycobacteria to cell wallinhibitory drugs decreases production of arabinoglycerolipid related to Mycolyl-arabinogalactan-peptidoglycan metabolism. J. Biol. Chem. 287: 11060-11069.
    Pubmed CrossRef Pubmed Central
  16. Alderwick LJ, Harrison J, Lloyd GS, Birch HL. 2015. The mycobacterial cell wall--peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. 5: a021113.
    Pubmed CrossRef Pubmed Central
  17. Jankute M, Cox JA, Harrison J, Besra GS. 2015. Assembly of the mycobacterial cell wall. Ann. Rev. Microbiol. 69: 405-423.
    Pubmed CrossRef
  18. Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514.
    Pubmed CrossRef Pubmed Central
  19. Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270.
    Pubmed CrossRef Pubmed Central
  20. Peters NT, Dinh T, Bernhardt TG. 2011. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J. Bacteriol. 193: 4973-4983.
    Pubmed CrossRef Pubmed Central
  21. Yang DC, Tan K, Joachimiak A, Bernhardt TG. 2012. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol. Microbiol. 85: 768-781.
    Pubmed CrossRef Pubmed Central
  22. Chauviac F-X, Bommer M, Yan J, Parkin G, Daviter T, Lowden P, et al. 2012. Crystal structure of reduced MsAcg, a putative nitroreductase from mycobacterium smegmatisand a close homologue of mycobacterium tuberculosis Acg. J. Biol. Chem. 287: 44372-44383.
    Pubmed CrossRef Pubmed Central
  23. Pitsawong W, Haynes CA, Koder RL, Jr., Rodgers DW, Miller AF. 2017. Mechanism-informed refinement reveals altered substrate-binding mode for catalytically competent nitroreductase. Structure 25: 978-987.
    Pubmed CrossRef Pubmed Central
  24. Cortial S, Chaignon P, Iorga BI, Aymerich S, Truan G, Gueguen-Chaignon V, et al. 2010. NADH oxidase activity of Bacillus subtilis nitroreductase NfrA1: insight into its biological role. FEBS Lett. 584: 3916-3922.
    Pubmed CrossRef
  25. Hektor HJ, Kloosterman H, Dijkhuizen L. 2002. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J. Biol. Chem. 277: 46966-46973.
    Pubmed CrossRef
  26. Liu H, Yang M, He ZG. 2016. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis. Sci. Rep. 6: 27489.
    Pubmed CrossRef Pubmed Central
  27. Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, et al. 2007. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 189: 5903-5915.
    Pubmed CrossRef Pubmed Central
  28. Valente W, Pienaar E, Fast A, Fluitt A, Whitney S, Fenton R, et al. 2009. A Kinetic Study of In vitro lysis of mycobacterium smegmatis. Chem. Eng. Sci. 64: 1944-1952.
    Pubmed CrossRef Pubmed Central
  29. Agrawal P, Miryala S, Varshney U. 2015. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 10: e0122076.
    Pubmed CrossRef Pubmed Central
  30. Namouchi A, Cimino M, Favre-Rochex S, Charles P, Gicquel B. 2017. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery. BMC Genomics 18(1): 530.
    Pubmed CrossRef Pubmed Central
  31. Verma A, Sampla AK, Tyagi JS. 1999. Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J. Bacteriol. 181: 4326-4333.
  32. Manca C, Paul S, Barry CEr, Freedman VH, Kaplan G. 1999. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67: 74-79.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd