Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-5: 731~738

AuthorZhuang Ding, Tao Tao, Lili Wang, Yanna Zhao, Huiming Huang, Demeng Zhang, Min Liu, Zhengping Wang, Jun Han
Place of dutyInstitute of BioPharmaceutical Research, Liaocheng University,P.R China
TitleBioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leaves
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-5
AbstractEndophytic fungi are an important component of plant microbiota, and have the excellent capacity for producing a broad variety of bioactive metabolites. These bioactive metabolites not only affect the survival of the host plant, but also provide valuable lead compounds for novel drug discovery. In this study, forty-two endophytic filamentous fungi were isolated from Ficus elastica leaves, and further identified as seven individual taxa by ITS-rDNA sequencing. The antimicrobial activity of these endophytic fungi was evaluated against five pathogenic microorganisms. Two strains, Fes1711 (Penicillium funiculosum) and Fes1712 (Trichoderma harzianum), displayed broad-spectrum bioactivities. Our following study emphasizes the isolation, identification and bioactivity testing of chemical metabolites produced by T. harzianum Fes1712. Two new isocoumarin derivatives (1 and 2), together with three known compounds (3–5) were isolated, and their structures were elucidated using NMR and MS. Compounds 1 and 2 exhibited inhibitory activity against Escherichia coli. Our findings reveal that endophytic fungi from the rubber tree F. elastica leaves exhibit unique characteristics and are potential producers of novel natural bioactive products.
Full-Text
Supplemental Data
Key_wordAntimicrobial activity, endophytic fungi, Trichoderma harzianum, isocoumarin, metabolites, ficus elastica
References
  1. Gouda S, Das G, Sen SK, Shin HS, Patra JK. 2016. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7: 1538.
    Pubmed CrossRef Pubmed Central
  2. Saikkonen K, F aeth S H, H elander M, S u llivan T J. 1 998. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 29: 319-343.
    CrossRef
  3. Rudgers JA, Fischer S, Clay K. 2010. Managing plant symbiosis: fungal endophyte genotype alters plant community composition. J. Appl. Ecol. 47: 468-477.
    CrossRef
  4. Rodriguez RJ, Woodward CJ, Redman RS. 2012. Fungal influence on plant tolerance to stress. pp. 155-163. In Southworth D, Biocomplexity of plant–fungal interactions, Wiley-Blackwell, Oxford.
    Pubmed CrossRef
  5. Kumar S, Kaushik N. 2013. Endophytic fungi isolated from oil seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8: e56202.
    Pubmed CrossRef Pubmed Central
  6. Soliman SSM, Trobacher CP, Tsao R, Greenwood JS, Raizada MN. 2013. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol. 13: 93.
    Pubmed CrossRef Pubmed Central
  7. Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214-216.
    Pubmed CrossRef
  8. Subbulakshmi GK, Thalavaipandian A, Bagyalakshmi RV, Rajendran A. 2012. Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa Wall. and Thuja occidentalis L. Int. J. Adv. Life Sci. 4: 9-15.
  9. Debbab A, Aly AH, Proksch P. 2011. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers. 49: 1-12.
    CrossRef
  10. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. 2011. Anticancer compounds derived from fungal endophytes:their importance and future challenges. Nat. Prod. Rep. 28:1208-1228.
    Pubmed CrossRef
  11. Maheshwari R. 2016. Fungi: experimental methods in biology. 2nd ed. CRC Press, New York.
  12. Siler DJ, Cornish K. 1993. A protein from Ficus elastica rubber particles is related to proteins from Hevea brasiliensis and Parthenium argentatum. Phytochemistry 32: 1097-1102.
    CrossRef
  13. Solis MJL, Yurkov A, Cruz TE, Unterseher M. 2015. Leafinhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol. Progress 14: 1019.
    CrossRef
  14. Ding Z, Li L, Che Q, Li D, Gu Q, Zhu T. 2016. Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20: 425-435.
    Pubmed CrossRef
  15. Sharma N, Kushwaha M, Arora D, Jain S, Singamaneni V, Sharma S, et al. 2018. New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J. Appl. Microbiol. 125: 111-120.
    Pubmed CrossRef
  16. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49: 201-241.
  17. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. 2018. Endophytic fungi – alternative sources of cytotoxic compounds: a review. Front. Pharmacol. 9: 309.
    Pubmed CrossRef Pubmed Central
  18. Lin ZL, Lu ZY, Zhu TJ, F ang YC, Gu QQ, Zhu WM. 2008. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem. Pharm. Bull. 56: 217-221.
    Pubmed CrossRef
  19. Malhadas C, Malheiro R, Pereira JA, Pinho PG, Baptista P. Antimicrobial activity of endophytic fungi from olive 2017. tree leaves. World J. Microbiol. Biotechnol. 33: 46.
    Pubmed CrossRef
  20. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7: 89-123.
    CrossRef
  21. Ding G, Wang H, Li L, Song B, Chen H, Zhang H, et al. 2014. Trichodermone, a Spiro-cytochalasan with a Tetracyclic Nucleus (7/5/6/5) Skeleton from the Plant Endophytic Fungus Trichoderma gamsii. J. Nat. Prod. 77: 164-167.
    Pubmed CrossRef
  22. Zhou P, Wu Z, Tan D, Yang J, Zhou Q, Zeng F, et al. 2017. Atrichodermones A-C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 123: 18-22.
    Pubmed CrossRef
  23. Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, et al. 2017. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv. 7: 51335-51342.
    CrossRef
  24. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43:143-148.
    Pubmed CrossRef
  25. Liu K, Yang YB, Miao CP, Zheng YK, Chen JL, Chen YW, et al. 2016. Koningiopisins A–H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta. Med. 82: 371-376.
    Pubmed CrossRef
  26. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y. 2013. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 97: 9365-9375.
    Pubmed CrossRef
  27. Leylaie S, Zafari D. 2018. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Front. Microbiol. 9: 1484.
    Pubmed CrossRef Pubmed Central
  28. Hill RA. 1986. Naturally occurring isocoumarins. Prog.Chem. Org. Nat. Prod. 49: 1-78.
    CrossRef
  29. Engelmeier D, Hadacek F, Hofer O, Lutz-Kutschera G, Nagl M, Wurz G, et al. 2014. Antifungal 3-Butylisocoumarins from Asteraceae-Anthemideae. J. Nat. Prod. 67: 19-25.
    Pubmed CrossRef
  30. Thongbai B, Surup F, Mohr K, Kuhnert E, Hyde KD, Stadler M. 2013. Gymnopalynes A and B, chloropropynyl-isocoumarin antibiotics from cultures of the basidiomycete Gymnopus sp. J. Nat. Prod. 76: 2141-2144.
    Pubmed CrossRef
  31. Kornsakulkarn J, Thongpanchang C, Lapanun S, Srichomthong K. 2009. Isocoumarin glucosides from the scale insect fungus Torrubiella tenuis BCC 12732. J. Nat. Prod. 72: 1341-1343.
    Pubmed CrossRef
  32. Krupke OA, Castle AJ, Rinker DL. 2003. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol. Res. 107: 1467-1475.
    Pubmed CrossRef
  33. Jeerapong C, Phupong W, Bangrak P, Intana W, Tuchinda P. 2015. Trichoharzianol, a new antifungal from Trichoderma harzianum F031. J. Agric. Food. Chem. 63: 3704-3708.
    Pubmed CrossRef
  34. Qin XY, Yang KL, Wang CY, Shao CL. 2014. Secondary metabolites of the zoanthid-derived fungus Trichoderma sp. TA26-28 collected from the south China sea. Chem. Nat. Compd. 50: 961-964.
    CrossRef
  35. Liang XR, Miao FP, Song YP, Guo ZY, Ji NY. 2016. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27. Nat. Prod. Res. 30: 1605-1610.
    Pubmed CrossRef
  36. Wang L, Zhou HB, Frisvad JC, Samson RA. 2004. Penicillium persicinum, a new griseofulvin, chrysogine and roquefortine C producing species from Qinghai province, China. Antonie Van Leeuwenhoek 86: 173-179.
    Pubmed CrossRef
  37. Yang JX, Qiu SX, S he ZG, L in YC. 2013. A n ew x anthone derivative from the marine fungus Phomopsis sp. (No. SK7RN3G1). Chem. Nat. Compd. 49: 31-33.
    CrossRef
  38. Ango YP, Kapche GDWF, Kuete V, Mapitse R, Yeboah SO, Ngadjui BT. 2016. Three new derivatives and others constituents from the roots and twigs of Trilepisium madagascariense DC. Helv. Chim. Acta 99: 642-649.
    CrossRef
  39. Fru CG, Sandjo LP, Kuete V, Liermann JC, Schollmeyer D, Yeboah SO, et al. 2013. Omphalocarpoidone, a new lanostane-type furano-spiro-γ-lactone from the wood of Tridesmostemon omphalocarpoides Engl. (Sapotaceae). Phytochem. Lett. 6: 676-680.
    CrossRef
  40. Pettit GR, Zhang Q, Pinilla V, Herald DL, Doubek DL, Duke JA. 2004. Isolation and structure of gustastatin from the Brazilian nut tree Gustavia hexapetala. J. Nat. Prod. 67: 983-985.
    Pubmed CrossRef
  41. Wansi JD, Wandji J, Waffo AFK, Ngeufa HE, Ndom JC, Fotso S, et al. 2006. Alkaloids from Oriciopsis glaberrima Engl. (Rutaceae). Phytochemistry 67: 475-480.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd