Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-4: 538~547

AuthorLingmei Sun, Xiaolong Ye, Dafa Ding, Kai Liao
Place of dutyDepartment of Pharmacology, Medical School of Southeast University
TitleOpposite effects of vitamin C and vitamin E on the antifungal activity of honokiol
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-4
AbstractThe aim of the present study was to evaluate the effects of two well-known natural antioxidants vitamin C (VC) and vitamin E (VE) on the antifungal activity of honokiol against Candida albicans. The broth microdilution method was employed to test the antifungal activities of honokiol with or without antioxidants in the medium against C. albicans strain. Intracellular reactive oxygen species (ROS) and lipid peroxidation were determined by fluorescence staining assay. Mitochondrial dysfunction was assessed by detecting the mitochondrial DNA and the mitochondrial membrane potential. We observed that VC could significantly potentiate the antifungal activities of honokiol while VE reduced the effectiveness of honokiol against C. albicans. In addition, VC accelerated honokiol-induced mitochondrial dysfunction and inhibited glycolysis leading to a decrease in cellular ATP. However, VE could protect against mitochondrial membrane lipid peroxidation and rescue mitochondrial function after honokiol treatment. Our research provides new insight into the understanding of the action mechanism of honokiol and VC combination against C. albicans.
Full-Text
Supplemental Data
Key_wordCandida albicans, honokiol, antioxidant, oxidative stress, glycolysis
References
  1. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922.
    CrossRef
  2. Villanueva C, Kross RD. 2012. Antioxidant-induced stress. Int. J. Mol. SCI. 13: 2091-2109.
    CrossRef
  3. Ayer A, Gourlay CW, Dawes IW. 2014. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 14: 60-72.
    CrossRef
  4. Traber MG, Stevens JF. 2011. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51: 1000-1013.
    CrossRef
  5. Buettner GR. 1986. Ascorbate autoxidation in the presence of iron and copper chelates. Free Radic. Res. Commun. 1: 349-353.
    CrossRef
  6. De Francesco EM, Bonuccelli G, Maggiolini M, Sotgia F, Lisanti MP. 2017. Vitamin C and doxycycline: a synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget 8: 67269-67286.
    CrossRef
  7. Amorati R, Zotova J, Baschieri A, Valgimigli L. 2015. Antioxidant activity of magnolol and honokiol: kinetic and mechanistic investigations of their reaction with peroxyl radicals. J. Org. Chem. 80: 10651-10659.
    CrossRef
  8. Liao K, Sun L. 2018. The Roles of Hsp90-calcineurin pathway in the antifungal activity of honokiol. J. Microbiol. Biotechnol. 28: 1086-1093.
  9. Sun LM, Liao K. 2018. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. J. Appl. Microbiol. 124: 754-763.
    CrossRef
  10. Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12: e172228.
    CrossRef
  11. Sun L, Liao K, Wang D. 2017. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12: e184003.
    CrossRef
  12. Sun L, Liao K, Wang D. 2015. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One 10: e117695.
    CrossRef
  13. Clinical and Laboratory Standards Institute (CLSI). 2008. M27-A3, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute.
  14. Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA. 1997. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob. Agents Chemother. 41: 1392-1395.
    CrossRef
  15. Takahashi M, Shibata M, Niki E. 2001. Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl1-pyrenylphosphine. Free Radic. Biol. Med. 31: 164-174.
    CrossRef
  16. Cossarizza A, Salvioli S. 2001. Flow cytometric analysis of mitochondrial membrane potential using JC-1. Curr. Protoc. Cytom. Chapter 9: unit 9-14.
    CrossRef
  17. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, et al. 1991. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a Jaggregateforming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 88: 3671-3675.
    CrossRef
  18. Sun L, Zhao Y, Yuan H, Li X, Cheng A, Lou H. 2011. Solamargine, a steroidal alkaloid glycoside, induces oncosis in human K562 leukemia and squamous cell carcinoma KB cells. Cancer Chemother. Pharmacol. 67: 813-821.
    CrossRef
  19. Chang W, Zhang M, Li Y, Lou H. 2015. Flow cytometrybased method to detect persisters in Candida albicans. Antimicrob. Agents Chemother. 59: 5044-5048.
    CrossRef
  20. Morita M, Naito Y, Yoshikawa T, Niki E. 2016. Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine. Redox Biol. 8: 127-135.
    CrossRef
  21. Dellinger M, Geze M. 2001. Detection of mitochondrial DNA in living animal cells with fluorescence microscopy. J. Microsc. 204: 196-202.
    CrossRef
  22. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. 2015. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350: 1391-1396.
    CrossRef
  23. Pelicano H, Martin DS, Xu RH, Huang P. 2006. Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633-4646.
    CrossRef
  24. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. 2003. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin.Infect. Dis. 36: 1103-1110.
    CrossRef
  25. Bondaryk M, Kurzatkowski W, Staniszewska M. 2013. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postepy Dermatol. Alergol. 30: 293-301.
    CrossRef
  26. Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY. 2015. Potential use of phenolic acids as anti-Candida agents: a review. Front Microbiol. 6: 1420.
    CrossRef
  27. Sun L, Hang C, Liao K. 2018. Synergistic effect of caffeic acid phenethyl ester with caspofungin against Candida albicans is mediated by disrupting iron homeostasis. Food Chem. Toxicol. 116: 51-58.
    CrossRef
  28. Sun L, Liao K, Hang C. 2018b. Caffeic acid phenethyl ester synergistically enhances the antifungal activity of fluconazole against resistant Candida albicans. Phytomedicine 40: 55-58.
    CrossRef
  29. Labriola D, Livingston R. 1999. Possible interactions between dietary antioxidants and chemotherapy. Oncology (Williston Park) 13: 1003-1008,
  30. Belhachemi MH, Boucherit K, Boucherit-Otmani Z, Belmir S, Benbekhti Z. 2014. Effects of ascorbic acid and alphatocopherol on the therapeutic index of amphotericin B. J. Mycol. Med. 24: e137-e142.
    CrossRef
  31. Yin H, Xu L, Porter NA. 2011. Free radical lipid peroxidation:mechanisms and analysis. Chem Rev. 111: 5944-5972.
    CrossRef
  32. Zhu X, Zou S, Li Y, Liang Y. 2017. Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment. Res. Microbiol. 168: 626-635.
    CrossRef
  33. Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321-336.
    CrossRef
  34. Carr A, Frei B. 1999. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 13: 1007-1024.
    CrossRef
  35. Clement MV, Ramalingam J, Long LH, Halliwell B. 2001. The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid. Redox Signal. 3: 157-163.
    CrossRef
  36. Halliwell B. 2013. The antioxidant paradox: less paradoxical now? Br. J. Clin. Pharmacol. 75: 637-644.
    CrossRef
  37. Gohil K, Packer L, de Lumen B, Brooks GA, Terblanche SE. 1986. Vitamin E deficiency and vitamin C supplements:exercise and mitochondrial oxidation. J. Appl. Physiol. 60:1986-1991.
    Pubmed CrossRef
  38. Bonuccelli G, De Francesco EM, de Boer R, Tanowitz HB, Lisanti MP. 2017. NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of vitamin C and CAPE as natural products targeting “stemness”. Oncotarget 8: 20667-20678.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd