Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-5: 758~764

AuthorXing Zhou, Jing He, Lingling Wang, Yang Wang, Guocheng Du, Zhen Kang
Place of dutyThe Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, P.R.China
TitleMetabolic Engineering of Saccharomyces cerevisiae to Improve Glucan Biosynthesis
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-5
Abstractβ-Glucan is a chief structural polymer in the cell wall of yeast. β-Glucan has attracted intensive attention because of its wide applications in health protection and cosmetic areas. In the present study, the β-glucan biosynthesis pathway in S. Cerevisiae was engineered to enhance β-glucan accumulation. A newly identified bacterial β-1, 6-glucan synthase GsmA from Mycoplasma agalactiae was expressed, and increased β-glucan content by 43%. In addition, other pathway enzymes were investigated to direct more metabolic flux towards the building of β-glucan chains. We found that overexpression of Pgm2 (phosphoglucomutase) and Rho1 (a GTPase for activating glucan synthesis) significantly increased β-glucan accumulation. After further optimization of culture conditions, the β-glucan content was increased by 53.1%. This study provides a new approach to enhance β-glucan biosynthesis in Saccharomyces cerevisiae.
Full-Text
Key_wordSaccharomyces cerevisiae, β-glucan, synthase, enzyme overexpression, cell resistance
References
  1. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P. 2011. Chemistry, physico-chemistry and applications linked to biological activities of beta-glucans. Nat. Prod. Rep. 28: 457-466.
    Pubmed CrossRef
  2. Samuelsen ABC, Jürgen S, Knutsen SH. 2014. Effects of orally administered yeast-derived beta-glucans: a review. Mol. Nutr. Food Res. 58: 183-193.
    Pubmed CrossRef
  3. Kayali H, Ozdag MF, Kahraman S, Aydin A, Gonul E, Sayal A, et al. 2005. The antioxidant effect of β-glucan on oxidative stress status in experimental spinal cord injury in rats. Neurosurg. Rev. 28: 298-302.
    Pubmed CrossRef
  4. Du B, Bian Z, Xu B. 2014. Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms:a review. Phytother. Res. 28: 159-166.
    Pubmed CrossRef
  5. Dalonso N, Goldman GH, Gern RMM. 2015. β-(1→3),(1→6)Glucans: medicinal activities, characterization, biosynthesis and new horizons. Appl. Microbiol. Biotechnol. 99: 7893-7906.
    Pubmed CrossRef
  6. Rieder A, Ballance S, Böcker U, Knutsen S. 2017. Quantification of 1,3-β-D-glucan from yeast added as a functional ingredient to bread. Carbohydr. Polym. 181: 34.
    Pubmed CrossRef
  7. Yamaguchi M, Namiki Y, Okada H, Mori Y, Furukawa H, Wang J, et al. 2011. Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathinsectioning electron microscopy. J. Electron Microsc. 60: 321. Fig. 5. The content of polysaccharides in the cell wall of strain G-RHO1. Cells were cultured in SD medium with 10, 20, 40, and 60 g/l glucose and 50 g/l NaCl respectively. The data shown are mean values from triplicates with error bars indicating the standard deviation.
    Pubmed CrossRef
  8. Teparić R, M rsa V. 2 013. P roteins involved i n building , maintaining and remodeling of yeast cell walls. Curr. Genet. 59: 171-185.
    Pubmed CrossRef
  9. Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latge JP. 2009. Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J. Biol. Chem. 284: 13401-13412.
    Pubmed CrossRef Pubmed Central
  10. Lesage G, Bussey H. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 317-343.
    Pubmed CrossRef Pubmed Central
  11. Latge JP. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66: 279-290.
    Pubmed CrossRef
  12. Klis FM, Boorsma A, De Groot PW. 2006. Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185-202.
    Pubmed CrossRef
  13. Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189: 1145-1175.
    Pubmed CrossRef Pubmed Central
  14. Xu S, Z hang GY, Z hang H , Kitajima T , Nakanishi H, G ao XD. 2016. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb. Cell Fact. 15: 179.
    Pubmed CrossRef Pubmed Central
  15. Chavan M, Suzuki T, Rekowicz M, Lennarz W. 2003. Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall beta1,6-glucan of Saccharomyces cerevisiae. Proc.Natl. Acad. Sci. USA 100: 15381-15386.
    Pubmed CrossRef Pubmed Central
  16. Guan B, Lei J, Su S, Chen F, Duan Z, Chen Y, et al. 2012. Absence of Yps7p, a putative glycosylphosphatidylinositollinked aspartyl protease in Pichia pastoris, results in aberrant cell wall composition and increased osmotic stress resistance. FEMS Yeast Res. 12: 969-979.
    Pubmed CrossRef
  17. Wang J, Li M, Zheng F, Niu C, Liu C, Li Q, et al. 2018. Cell wall polysaccharides: before and after autolysis of brewer's yeast. World J. Microbiol. Biotechnol. 34: 137.
    Pubmed CrossRef
  18. Gaurivaud P, Baranowski E, PauRoblot C, Sagné E, Citti C, Tardy F. 2016. Mycoplasma agalactiae secretion of β-(1→6) -glucan, a rare polysaccharide in prokaryotes, is governed by high-frequency phase variation. Appl. Environ. Microbiol. 82:AEM.00274-00216.
    Pubmed CrossRef Pubmed Central
  19. Dimopoulou M, Vuillemin M, Campbell-Sills H, Lucas PM, Ballestra P, Miot-Sertier C, et al. 2014. Exopolysaccharide (EPS) synthesis by Oenococcus oeni: from genes to phenotypes. PLoS One 9: e98898.
    Pubmed CrossRef Pubmed Central
  20. Hrmova M, Stone BA, Fincher GB. 2010. High-yield production, refolding and a molecular modelling of the catalytic module of (1,3)-β-d-glucan (curdlan) synthase from Agrobacterium sp. Glycoconj. J. 27: 461-476.
    Pubmed CrossRef
  21. Liu J J, Zhang GC, Kong , II, Yun E J, Zheng JQ, Kweon DH, et al. 2018. A mutation in PGM2 causing inefficient galactose metabolism in the probiotic yeast Saccharomyces boulardii. Appl. Environ. Microbiol. 84(10): pii: e02858-17.
    Pubmed CrossRef Pubmed Central
  22. Bro C , Knudsen S, R eg enberg B, Olsson L, N ielsen J . 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-6472.
    Pubmed CrossRef Pubmed Central
  23. Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2010. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb. Cell Fact. 9: 40.
    Pubmed CrossRef Pubmed Central
  24. Lee K S, H ong ME, J ung SC, H a SJ, Yu B J, K oo HM, et al. 2011. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol. Bioeng. 108: 621-631.
    Pubmed CrossRef
  25. Eitzen G , Log an M R. 2 012. A nalysis of R ho G TPase activation in Saccharomyces cerevisiae. Methods Mol. Biol. 827:369-380.
    Pubmed CrossRef
  26. Auesukaree C. 2017. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 124: 133-142.
    Pubmed CrossRef
  27. Bleoanca I, Silva AR, Pimentel C, Rodrigues-Pousada C, Menezes Rde A. 2013. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 116: 697-705.
    Pubmed CrossRef
  28. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA. 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31: 535-569.
    Pubmed CrossRef
  29. Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd