Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-4: 518~526

AuthorHee Sun Heo, Ga Eun Han, Junho Won, Yeonoh Cho, Hyeran Woo, Jong Hun Lee
Place of dutyDepartment of Food Science and Biotechnology, College of Life Science, CHA University, Geyonggi-do, Republic of Korea
TitlePueraria montana var. lobata root extract inhibits photoaging on skin through Nrf2 pathway.
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-4
AbstractPueraria montana var. lobata is a bioactive substance, in possession of a variety of beneficial health effects, which has long been extensively used as a traditional medication for the treatment of fever, acute dysentery, diabetes, and cardiovascular diseases in North-East Asian countries. The purpose of this study was to evaluate the cytoprotective activity of Pueraria montana var. lobata ethanol extract (PLE) for ultraviolet B (UVB) induced oxidative stress in human dermal fibroblasts (HDF). It was hypothesized that PLE treatment (25-100 μg/mL) would reduce intracellular reactive oxygen species (ROS) levels as well as increase collagen production in UVB-irradiated HDF. The results confirmed this theory, with collagen production increasing in the PLE treatment group in a dose-dependent manner. In addition, regulators of cellular ROS accumulation, including HO-1 and NOQ-1, were activated by Nrf2, which was mediated by PLE. Hence, intracellular levels of ROS were also reduced in the PLE treatment group in a dose-dependent manner. In conclusion, PLE increases collagen production and maintains hyaluronic acid (HA) levels in human dermal fibroblasts exposed to UVB-irradiation, thereby inhibiting photoaging.
Full-Text
Key_wordPueraria montana var. lobata, UVB, photoaging, Nrf2
References
  1. Baumann L. 2007. Skin ageing and its treatment. J. Pathol. 211: 241-251.
    CrossRef
  2. Debacq-Chainiaux F, Leduc C, Verbeke A, Toussaint O. 2012. UV, stress and aging. Dermatoendocrinol. 4: 236-240.
    CrossRef
  3. Makrantonaki E, Bekou V, Zouboulis CC. 2012. Genetics and skin aging. Dermatoendocrinol. 4: 280-284.
    CrossRef
  4. Wlaschek M, Tantcheva-Poor I, Naderi L, Ma W, Schneider LA, Razi-Wolf Z, et al. 2001. Solar UV irradiation and dermal photoaging. J. Photochem. Photobiol. B. 63: 41-51.
    CrossRef
  5. Ma W, Wlaschek M, Tantcheva-Poor I, Schneider LA, Naderi L, Razi-Wolf Z, et al. 2001. Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin. Exp. Dermatol. 26: 592-599.
    CrossRef
  6. Yaar M, Eller MS, Gilchrest BA. 2002. Fifty years of skin aging. J. Investig. Dermatol. Symp. Proc. 7: 51-58.
    CrossRef
  7. Helfrich YR, Sachs DL, Voorhees JJ. 2008. Overview of skin aging and photoaging. Dermatol. Nurs. 20: 177-183; quiz 184.
  8. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, et al. 1996. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379: 335-339.
    CrossRef
  9. Kim J, Lee C-W, Kim EK, Lee S-J, Park N-H, Kim H-S, et al. 2011. Inhibition effect of Gynura procumbens extract on UVBinduced matrix-metalloproteinase expression in human dermal fibroblasts. J. Ethnopharmacol. 137: 427-433.
    CrossRef
  10. Kohl E, Steinbauer J, Landthaler M, Szeimies RM. 2011. Skin ageing. J. Eur. Acad. Dermatol. Venereol. 25: 873-884.
    CrossRef
  11. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. 2016. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17(6).
    CrossRef
  12. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, et al. 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox. Biol. 6: 183-197.
    CrossRef
  13. Loft S, Poulsen HE. 1996. Cancer risk and oxidative DNA damage in man. J. Mol. Med (Berl). 74: 297-312.
    CrossRef
  14. Rabilloud T, Chevallet M, Luche S, Leize-Wagner E. 2005. Oxidative stress response: a proteomic view. Expert Rev. Proteomics. 2: 949-956.
    CrossRef
  15. Zhang DD. 2006. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38: 769-789.
    CrossRef
  16. Giudice A, Arra C, Turco MC. 2010. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 647: 37-74.
    CrossRef
  17. Kumar H, Kim IS, More SV, Kim BW, Choi DK. 2014. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep. 31:109-139.
    Pubmed CrossRef
  18. Dinkova-Kostova AT, Talalay P. 2008. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 52 Suppl 1: S128-138.
    CrossRef
  19. Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong AN. 2013. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther. 137: 153-171.
    CrossRef
  20. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, et al. 2001. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J. Biol. Chem. 276: 20858-20865.
    CrossRef
  21. Li N, Alam J, Venkatesan MI, Eiguren-Fernandez A, Schmitz D, Di Stefano E, et al. 2004. Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J. Immunol. 173: 3467-3481.
    CrossRef
  22. Siegel D, Bolton EM, Burr JA, Liebler DC, Ross D. 1997. The reduction of alpha-tocopherolquinone by human NAD(P)H:quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol. Pharmacol. 52:300-305.
    Pubmed CrossRef
  23. Bebrevska L, Foubert K, Hermans N, Chatterjee S, Van Marck E, De Meyer G, et al. 2010. In vivo antioxidative activity of a quantified Pueraria lobata root extract. J. Ethnopharmacol. 127: 112-117.
    CrossRef
  24. Park HJ, Cho DH, Kim HJ, Lee JY, Cho BK, Bang SI, et al. 2009. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J. Invest. Dermatol. 129: 843-850.
    CrossRef
  25. Pawlikowska-Pawlęga B, Ignacy Gruszecki W, Misiak L, Paduch R, Piersiak T, Zarzyka B, et al. 2007. Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group. Biochim. Biophys. Acta 1768: 2195-2204.
    CrossRef
  26. Matzinger M, Fischhuber K, Heiss EH. 2018. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol. Adv. 36: 1738-1767.
    CrossRef
  27. Kw on J E, L im J , Bang I , Kim I, K im D , Kang SC. 2 019. Fermentation product with new equol-producing Lactobacillus paracasei as a probiotic like product candidate for prevention of skin and intestinal disorder. J. Sci. Food Agric. doi: 10.1002/jsfa.9648. [Epub ahead of print]
    CrossRef
  28. Lee J-H, Jeon Y-D, Lee Y-M, Kim D-K. 2018. The suppressive effect of puerarin on atopic dermatitis-like skin lesions through regulation of inflammatory mediators in vitro and in vivo. Biochem. Biophys. Res. Commun. 498: 707-714.
    CrossRef
  29. Han E, Chang B, Kim D, Cho H, Kim S. 2015. Melanogenesis inhibitory effect of aerial part of Pueraria thunbergiana in vitro and in vivo. Arch. Dermatol. Res. 307: 57-72.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd