Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-3: 339~346

AuthorSuji Ye, Jeong-won Kim, Soo Rin Kim
Place of dutySchool of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
TitleMetabolic Engineering for Improved Fermentation of L-Arabinose
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-3
AbstractL-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juiceprocessing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.
Full-Text
Key_wordL-arabinose, pectin, pentose, metabolic engineering, Saccharomyces cerevisiae
References
  1. Robertson GP, Hamilton SK, Barham BL, Dale BE, Izaurralde RC, Jackson RD, et al. 2017. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356(6345).
    CrossRef
  2. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R. 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101: 4775-4800.
    Pubmed CrossRef
  3. Go AR, Ko JW, Lee SJ, Kim SW, Han SO, Lee J, et al. 2012. Process design and evaluation of value-added chemicals production from biomass. Biotechnol. Bioprocess Eng. 17:1055-1061.
    CrossRef
  4. Trinh LTP, Lee Y-J, Lee J-W, Lee W-H. 2018. Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate. Biotechnol. Bioprocess Eng. 23: 228-237.
    CrossRef
  5. Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, et al. 2017. Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Science Adv.3: e1603301.
    Pubmed CrossRef Pubmed Central
  6. Liao JC, Mi L, Pontrelli S, Luo S. 2016. Fuelling the future:microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14: 288-288.
    Pubmed CrossRef
  7. Wei N, Quarterman J, Jin YS. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70-77.
    Pubmed CrossRef
  8. Park M-R, Kim S-K, Jeong G-T. 2018. Biosugar production from Gracilaria verrucosa with sulfamic acid pretreatment and subsequent enzymatic hydrolysis. Biotechnol. Bioprocess Eng. 23: 302-310.
    CrossRef
  9. Javier AG, Maria C ristina R, Oriana S, Maria E lena L . 2018. Saccharification of brown macroalgae using an arsenal of recombinant alginate lyases: potential application in the biorefinery process. J. Microbiol. Biotechnol. 28: 1671-1682.
  10. Oh YR, Jung KA, Lee HJ, Jung GY, Park JM. 2018. A novel 3,6-anhydro-L-galactose dehydrogenase produced by a newly isolated Raoultella ornithinolytica B6-JMP12. Biotechnol. Bioprocess Eng. 23: 64-71.
    CrossRef
  11. Van Dyk JS, Gama R, Morrison D, Swart S, Pletschke BI. 2013. Food processing waste: problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew. Sustain. Energy Rev. 26: 521-531.
    CrossRef
  12. Lisandro GS, Raul NC, Maria TB, Miguel AI. 2018. Feasibility of bioethanol production from cider waste. J. Microbiol. Biotechnol. 28: 1493-1501.
  13. Edwards MC, Doran-Peterson J. 2012. Pectin-rich biomass as feedstock for fuel ethanol production. App. Microbiol. Biotechnol. 95: 565-575.
    Pubmed CrossRef Pubmed Central
  14. Choi IS, Lee YG, Khanal SK, Park BJ, Bae HJ. 2015. A lowenergy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. App. Energy 140: 65-74.
    CrossRef
  15. May CD. 1990. Industrial pectins: Sources, production and applications. Carbohydr. Polym. 12: 79-99.
    CrossRef
  16. Seiboth B, Metz B. 2011. Fungal arabinan and L-arabinose metabolism. App. Microbiol. Biotechnol. 89: 1665-1673.
    Pubmed CrossRef Pubmed Central
  17. Oosterveld A, Beldman G, Schols HA, Voragen AGJ. 1996. Arabinose and ferulic acid rich pectic polysaccharides extracted from sugar beet pulp. Carbohydr. Res. 288: 143-153.
    CrossRef
  18. Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, et al. 2016. Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chem. 201: 37-45.
    Pubmed CrossRef
  19. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, et al. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 90: 391-418.
    Pubmed CrossRef
  20. Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861.
    Pubmed CrossRef
  21. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. 2007. Towards industrial pentosefermenting yeast strains. App. Microbiol. Biotechnol. 74: 937-953.
    Pubmed CrossRef
  22. Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, et al. 2012. Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824. J. Ind. Microbiol. Biotechnol. 39: 1859-1867.
    Pubmed CrossRef
  23. Fonseca C, Romão R, Rodrigues De Sousa H, HahnHägerdal B, Spencer-Martins I. 2007. L-Arabinose transport and catabolism in yeast. FEBS J. 274: 3589-3600.
    Pubmed CrossRef
  24. Verho R, Putkonen M, Londesborough J, Penttilä M, Richard P. 2004. A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast. J. Biol. Chem.279: 14746-14751.
    Pubmed CrossRef
  25. Fonseca C, Spencer-Martins I, Hahn-Hägerdal B. 2007. LArabinose metabolism in Candida arabinofermentans P YC C 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl. Microbiol. Biotechnol. 75: 303-310.
    Pubmed CrossRef
  26. McMillan JD, Boynton BL. 1994. Arabinose utilization by xylose-fermenting yeasts and fungi. Appl. Biochem. Biotechnol. 45-46: 569-584.
    Pubmed CrossRef
  27. Watanabe S, Kodak T, Makino K. 2006. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. J. Biol. Chem. 281: 2612-2623
    CrossRef
  28. Dien BS, Kurtzman CP, Saha BC, Bothast RJ. 1996. Screening for L-arabinose fermenting yeasts. Appl. Biochem. Biotechnol. 57-58: 233-242.
    Pubmed CrossRef
  29. Kurtzman CP, Dien BS. 1998. Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 74: 237-243.
    CrossRef
  30. Wisselink HW, Toirkens MJ, Berriel MDRF, Winkler AA, Van Dijken JP, Pronk JT, et al. 2007. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl. Environ. Microbiol. 15:488-491.
    CrossRef
  31. Finn RK, Bringer S, Sahm H. 1984. Fermentation of arabinose to ethanol by Sarcina ventriculi. Appl. Microbiol. Biotechnol. 19: 161-166.
    CrossRef
  32. Bothast RJ, Saha BC, Flosenzier V, Ingram LO. 1994. Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol. Lett. 16: 401-406.
    CrossRef
  33. Dien BS, Hespell RB, Wyckoff HA, Bothast RJ. 1998. Fermentation of hexoses and pentoses sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb. Technol. 23: 366-371.
    CrossRef
  34. Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M. 2003. Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res. 3: 185-189.
    CrossRef
  35. Bera AK, Sedlak M, Khan A, Ho NWY. 2010. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl. Microbiol. Biotechnol. 87: 1803-1811.
    Pubmed CrossRef
  36. Becker J, Boles E. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69: 4144-4150.
    Pubmed CrossRef Pubmed Central
  37. Wang C , Shen Y , Zhang Y, S uo F , Hou J, B ao X . 2013. Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomed. Res. Int. 2013:461204.
    Pubmed Pubmed Central
  38. Wang C, Zhao J, Qiu C, Wang S, Shen Y, Du B, et al. 2017. Coutilization of D-glucose, D-xylose, and L-arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering. Biomed. Res. Int. 2017: 5318232.
    CrossRef
  39. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2009. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb. Cell Fact. 8: 1-12.
    Pubmed CrossRef Pubmed Central
  40. Watanabe S, Utsumi Y, Sawayama S, Watanabe Y. 2016. Identification and characterization of D-arabinose reductase and D-arabinose transporters from Pichia stipitis. Biosci. Biotechnol. Biochem. 80: 2151-2158.
    Pubmed CrossRef
  41. Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M. 2002. The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. Biochem. 41: 6432-6437.
    CrossRef
  42. Metz B, de Vries RP, Polak S, Seidl V, Seiboth B. 2009. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a d-mannitol dehydrogenase and is not involved in Larabinose catabolism. FEBS Lett. 583: 1309-1313.
    Pubmed CrossRef
  43. Wiedemann B, Boles E. 2008. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74: 2043-2050.
    Pubmed CrossRef Pubmed Central
  44. Wang X, Yang J, Yang S, Jiang Y. 2019. Unraveling the genetic basis of fast l-arabinose consumption on top of recombinant xylose-fermenting Saccharomyces cerevisiae. Biotechnol. Bioeng. 116: 283-293.
    Pubmed CrossRef
  45. Lee DW, Hong YH, Choe EA, Lee SJ, Kim SB, Lee HS, et al. 2005. A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic L-arabinose isomerases: the effects of divalent metal ions on protein stability at elevated temperatures. FEBS Lett. 579: 1261-1266.
    Pubmed CrossRef
  46. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, et al. 2017. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res. 17: fox044.
    Pubmed CrossRef Pubmed Central
  47. Leandro M J, F onseca C , Gonçalves P. 2 009. H exose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Res. 9: 511-525.
    Pubmed CrossRef
  48. Subtil T, Boles E. 2011. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol. Biofuels 4: 1-10.
    Pubmed CrossRef Pubmed Central
  49. Verhoeven MD, Bracher JM, Nijland JG, Bouwknegt J, Daran JG, Driessen AJM, et al. 2018. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake. FEMS Yeast Res. 18:doi: 10.1093/femsyr/foy062.
    CrossRef
  50. Li J, X u J, C ai P , Wang B , Ma Y , Benz J P, et al. 2015. Functional analysis of two L-arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81: 4062-4070.
    Pubmed CrossRef Pubmed Central
  51. Bracher JM, Verhoeven MD, Wisselink HW, Crimi B, Nijland JG, Driessen AJM, et al. 2018. The Penicillium chrysogenum transporter Pc AraT enables high-affinity, glucose-insensitive L-arabinose transport in Saccharomyces cerevisiae. Biotechnol. Biofuels 11:63.
    Pubmed CrossRef Pubmed Central
  52. Verhoeven MD, de Valk SC, Daran JG, van Maris AJA, Pronk JT. 2018. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Res. 18: doi:10.1093/femsyr/foy075.
    CrossRef
  53. Kim SR, Ha S-J, Wei N, Oh EJ, Jin Y-S. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282.
    Pubmed CrossRef
  54. Lane S, Xu H, Oh EJ, Kim H, Lesmana A, Jeong D, et al. 2018. Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae. Sci. Rep. 8: 2613.
    Pubmed CrossRef Pubmed Central
  55. Deanda K, Zhang MIN, Eddy C, Picataggio S. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Microbiol. 62:4465-4470.
  56. Schneider J, Niermann K, Wendisch VF. 2011. Production of the amino acids L-glutamate, L-lysine, L-ornithine and Larginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. 154: 191-198.
    Pubmed CrossRef
  57. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from landuse change. Science 423: 1238-1241.
    Pubmed CrossRef
  58. Lynd LR. 2017. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35: 912-915.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd