Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-4: 607~616

AuthorHan Li, Xiumei Cui, Liangyu Zheng
Place of dutyJilin University, People’s Republic of China.
TitleFunctionalized Poplar Powder as a Support Material for Immobilization of Enoate Reductase and a Cofactor Regeneration System
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-4
AbstractIn this study, functionalized poplar powder (FPP) was used as a support material for the immobilization of enoate reductase (ER) and glucose-6-phosphate dehydrogenase (GDH) by covalent binding. Under optimal conditions, the immobilization efficiency of ER-FPP and GDH-FPP was 95.1% and 84.7%, and the activity recovery of ER and GDH was 47.5% and 37.8%, respectively. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis indicated that FPP was a suitable carrier for enzyme immobilization. ER-FPP and GDH-FPP exhibit excellent thermal stabilities and superior reusability. Especially, ER-FPP and GDH-FPP enable the continuous conversion of 4-(4-Methoxyphenyl)-3-buten-2-one with NAD+ recycling. While the immobilization strategies established here were simple and inexpensive, they exploited a new method for the immobilization and application of ER and its cofactor recycling system.
Full-Text
Supplemental Data
Key_wordEnoate reductase, functionalized poplar powder, covalent immobilization, cofactor regeneration system
References
  1. Ga o X, Ren J, Wu Q, Zhu D. 2012. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb. Technol. 51:26-34.
    Pubmed CrossRef
  2. Stuermer R , Hauer B , H all M , F aber K . 2007. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr. Opin. Chem. Biol.11: 203-213.
    CrossRef
  3. M élanie H, Stueckler C, Hauer B, Stuermer R, Friedrich T, Breuer M, et al. 2008. Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and old yellow enzymes OYE 1–3 from yeasts. Eur. J. Org. Chem. 2008: 1511-1516.
    CrossRef
  4. W inkler CK, Tasnádi G, Clay D, Hall M, Faber K. 2012. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J. Biotechnol. 162: 381-389.
    CrossRef
  5. Sch ittmayer M, Glieder A, Uhl MK, Winkler A, Zach S, Schrittwieser JH, et al. 2011. Old yellow enzyme-catalyzed dehydrogenation of saturated ketones. Adv. Synth. Catal.353: 268-274.
    CrossRef
  6. Stu eckler C, Hall M, Ehammer H, Pointner E, Kroutil W, Macheroux P, et al. 2007. Stereocomplementary bioreduction of α, β-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol. Org. Lett. 9: 5409-5411.
    CrossRef
  7. Turrini NG, H all M , Faber K . 2015. Enzymatic s ynthesis of optically active lactones via asymmetric bioreduction using ene-reductases from the old yellow enzyme family. Adv. Synth. Catal. 357: 1861-1871.
    CrossRef
  8. Donk WACD, Zhao H. 2003. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14:421-426.
    CrossRef
  9. Endo T, Koizumi S. 2001. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv. Synth. Catal. 343: 521-526.
    CrossRef
  10. Fr anssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. 2013. Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 42: 6491-6533.
    CrossRef
  11. B etancor L, Berne C, Luckarifta HR, Spain JC. 2006. Coimmobilization of a redox enzyme and a cofactor regeneration system. Chem. Commun. 34: 3640-3642.
    CrossRef
  12. Dicosimo R, Mcauliffe J, Poulose AJ, Bohlmann G. 2013. Industrial use of immobilized enzymes. Chem. Soc. Rev. 42:6437-6474.
    Pubmed CrossRef
  13. Adlercreutz P. 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42: 6406-6436.
    CrossRef
  14. Wa ng Y, Zhang X, Han N, Wu Y, Wei D. 2018. Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. Int. J. Biol. Macromol. 120: 100-108.
    CrossRef
  15. Zucca P, Lafuente RF, Sanjust E. 2016. Agarose and its derivatives as supports for enzyme immobilization. Molecules 1: 1-25.
    CrossRef
  16. O suna Y, Sandoval J, Saade H, López RG, Martinez JL, Colunga EM, et al. 2015. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38:1437-1445.
    Pubmed CrossRef
  17. Krajewska B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35: 126-139.
    CrossRef
  18. L i K, Chen ZB, Liu DL, Zhang L, Tang Z, Wang Z, et al. 2018. Design and synthesis study of the thermo-sensitive copolymer carrier of penicillin G acylase. Polym. Adv. Technol. 29: 1902-1912.
    CrossRef
  19. L i K, Liu XT, Zhang XF, Liu D, Zhang XY, Ma SM, et al. 2019. The engineering and immobilization of penicillin G acylase onto thermo-sensitive tri-block copolymer system. Polym. Adv. Technol. 30: 86-93.
    CrossRef
  20. Yilmaz E, Can K, Sezgin M, Yilmaz M. 2011. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresour. Technol. 102: 499-506.
    CrossRef
  21. H osseini SH, Hosseini SA, Zohreh N, Yaghoubi M, Pourjavadi A. 2018. Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability. J. Agric. Food Chem. 66:789-798.
    Pubmed CrossRef
  22. Poojari Y, Clarson SJ. 2013. Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatal. Agric. Biotechnol. 2: 7-11.
    CrossRef
  23. Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, et al. 2013. Efficient immobilisation of industrial biocatalysts:criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev. 42:6262-6276.
    Pubmed CrossRef
  24. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. 2012. Valorization of biomass: deriving more value from waste. Science 337: 695-699.
    CrossRef
  25. Parveen K, Diane MB, Michael JD, Pieter S. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48:3713-3729.
    CrossRef
  26. L i H, Xiao W, Xie P, Zheng L. 2018. Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme. Enzyme Microb. Technol. 109: 66-73.
    CrossRef
  27. Tian X, Zhang S, Zheng L. 2016. Enzyme-Catalyzed Henry reaction in choline chloride-based deep eutectic solvents. J. Microbiol. Biotechnol. 26: 80-88.
    CrossRef
  28. Francisco M, Bruinhorst VDA, Kroon MC. 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14: 2153-2157.
    CrossRef
  29. L ynam JG, Reza MT, Vasquez VR, Coronella CJ. 2012. Pretreatment of rice hulls by ionic liquid dissolution. Bioresour. Technol. 114: 629-636.
    CrossRef
  30. Lyna m JG, Kumar N, Wong MJ. 2017. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 238: 684-689.
    CrossRef
  31. J avier RM, Rivas BDL, Rosario M, Guisán JM, Fernando LG.2012. Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with in situ recycling of soluble cofactors. ChemCatChem 4:1279-1288.
    CrossRef
  32. M igneault I, Dartiguenave C, Bertrand MJ, Waldron KC.2004. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37: 790-802.
    CrossRef
  33. B arbosa O, Ortiz C, Murcia AB, Torres R, Rodrigues RC, Lafuente RF. 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4: 1583-1600.
    CrossRef
  34. Wine Y, Hadar NC, Freeman A, Frolow F. 2007. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol. Bioeng. 98: 711-718.
    CrossRef
  35. Brady D, Jordaan J. 2009. Advances in enzyme immobilization. Biotechnol. Lett. 31: 1639-1650.
    CrossRef
  36. M orad M, Nowicka E, Douthwaite M, Iqbal S, Miedziak P, Edwards JK, et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer:synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catal. Sci. Technol. 7: 1928-1936.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd