Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-2: 304~310

AuthorHee Jun Cho, Byung Moo Oh, Jong-Tae Kim, Jeewon Lim, Sang Yoon Park, Yo Sep Hwang, Kyoung Eun Baek, Bo-Yeon Kim, Inpyo Choi, Hee Gu Lee
Place of dutyImmunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
TitleEfficient Interleukin-21 Production by Optimization of Codon and Signal Peptide in Chinese Hamster Ovarian Cells
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-2
AbstractInterleukin-21 is a common γ-chain cytokine that controls the immune responses of B cells, T cells, and natural killer cells. Targeting IL-21 to strengthen the immune system is promising for the development of vaccines as well as anti-infection and anti-tumor therapies. However, the practical application of IL-21 is limited by the high production cost. In this study, we improved IL-21 production by codon optimization and selection of appropriate signal peptide in CHO-K1 cells. Codon-optimized or non-optimized human IL-21 was stably transfected into CHO-K1 cells. IL-21 expression was 10-fold higher for codon-optimized than non-optimized IL-21. We fused five different signal peptides to codon-optimized mature IL-21 and evaluated their effect on IL-21 production. The best result (a 3-fold increase) was obtained using a signal peptide derived from human azurocidin. Furthermore, codon-optimized IL-21 containing the azurocidin signal peptide promoted IFN-γ secretion and STAT3 phosphorylation in NK-92 cells similar to codon-optimized IL-21 containing original signal peptide. Collectively, these results indicate that codon optimization and azurocidin signal peptides provide an efficient approach for the high-level production of IL-21 as a biopharmaceutical.
Full-Text
Key_wordIL-21, codon optimization, signal peptide, NK cells, CHO cells
References
  1. Rochman Y, Spolski R, Leonard WJ. 2009. New insights into the regulation of T cells by gamma(c) family cytokines. Nat. Rev. Immunol. 9: 480-490.
    Pubmed CrossRef Pubmed Central
  2. Spolski R and Leonard WJ. 2014. Interleukin-21: a doubleedged sword with therapeutic potential. Nat. Rev. Drug Discov. 13: 379-95.
    Pubmed CrossRef
  3. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, et al. 2001. Cutting edge: the common γ-chain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167: 1-5.
    Pubmed CrossRef
  4. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735.
    Pubmed CrossRef
  5. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329.
    Pubmed CrossRef
  6. Spolski R, Leonard WJ. 2008. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26: 57-79.
    Pubmed CrossRef
  7. Spolski R, Leonard WJ. 2008. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 20: 295-301.
    Pubmed CrossRef Pubmed Central
  8. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, et al. 2000. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408: 57-63.
    Pubmed CrossRef
  9. Park YK, Shin DJ, Cho D, Kim SK, Lee JJ, Shin MG et al. 2012. Interleukin-21 increases direct cytotoxicity and IFN-γ production of ex vivo expanded NK cells towards breast cancer cells. Anticancer Res. 32: 839-846.
    Pubmed
  10. Davis ID, Skrumsager BK, Cebon J, et al. 2007. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res. 13:3630-3636.
    Pubmed CrossRef
  11. Thompson JA, Curti BD, Redman BG, et al. 2008. Phase I study of recombinant interleukin-21 in patient with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol. 26: 20342039.
    Pubmed CrossRef
  12. Petrella TM, Tozer R, Belanger K, et al. 2012. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J. Clin. Oncol. 30: 3396-3401.
    Pubmed CrossRef
  13. Zhu J. 2012. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 30: 1158-1170.
    Pubmed CrossRef
  14. Walsh G. 2014. Biopharmaceutical benchmarks. Nat. Biotechnol. 32: 992-1000.
    Pubmed CrossRef
  15. Khan KH. 2013. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull. 3: 257-263.
    Pubmed Pubmed Central
  16. Hung F, Deng L, Ravnikar P, Condon R, Li B, Do L, et al. 2010. mRNA stability and antibody production in CHO cells: improvement through gene optimization. Biotechnol. J. 5: 393-401.
    Pubmed CrossRef
  17. You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, et al. 2018. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-8986-5. [Epub ahead of print]
    CrossRef
  18. Jeiranikhameneh M, Moshiri F, Keyhan Falasafi S, Zomorodipour A. 2017. Designing signal peptides for efficient periplasmic expression of human growth hormone in Escherichia coli. J. Microbiol. Biotechnol. 27: 1999-2009.
    Pubmed CrossRef
  19. Attallah C, Etcheverrigaray M, Kratje R, Oggero M. 2017. A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species. Protein Expr. Purif. 132: 27-33.
    Pubmed CrossRef
  20. Haryadi R, Ho S, Kok YJ, Pu HX, Zheng L, Pereira NA, et al. 2015. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One 10: e0116878.
    Pubmed CrossRef Pubmed Central
  21. Kober L, Zehe C, Bode J. 2013. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol. Bioeng. 110: 1164-1173.
    Pubmed CrossRef
  22. Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J. Biotechnol. 128: 705-715.
    Pubmed CrossRef
  23. Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY ,et al. 2018. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett. 417: 141-151.
    Pubmed CrossRef
  24. Shin JS, Ku KB, Jang Y, Yoon YS, Shin D, Kwon OS, et al. 2017. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J. Microbiol. 55: 979-983.
    Pubmed CrossRef
  25. Kim JH, Lee CH, Lee SW. 2016. Hepatitis C virus infection stimulates transforming growth factor-beta1 expression through up-regulating miR-192. J. Microbiol. 54: 520-526.
    Pubmed CrossRef
  26. Hong S, Yu JW. 2018. Prolonged exposure to lipopolysaccharide induces NLRP3-independent maturation and secretion of interleukin (IL)-1β in macrophages. J. Microbiol. Biotechnol. 28: 115-121.
    Pubmed
  27. Bhardwaj M, Cho HJ, Paul S, Jakhar R, Khan I, Lee SJ et al. 2017. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget. 9: 3278-3291.
    Pubmed Pubmed Central
  28. Choi DW, Jung SY, Kang J, Nam YD, Lim SI, Kim KT et al. 2018. Immune-enhancing effect of nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a mouse model of cyclophosphamideinduced immunosuppression. J. Microbiol. Biotechnol. 28: 218226.
    Pubmed CrossRef
  29. Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. 2018. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 37: 861-872.
    Pubmed CrossRef Pubmed Central
  30. Yoon J, Hwang YS, Lee M, Sun J, Cho HJ, Knapik L, et al. 2018. TBC1d24-ephrinB2 interaction regulates contact inhibition of locomotion in neural crest cell migration. Nat. Commun. 9: 3491.
    Pubmed CrossRef Pubmed Central
  31. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915.
    Pubmed
  32. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562.
    Pubmed
  33. Lai T, Yang Y, Ng SK. 2013. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6: 579-603.
    Pubmed CrossRef Pubmed Central
  34. Schaub J, Clemens C, Schorn P, Hildebrandt T, Rust W, Mennerich D, et al. 2010. CHO gene expression profiling in biopharmaceutical process analysis and design. Biotechnol. Bioeng. 105: 431-438.
    Pubmed CrossRef
  35. Reinhart D, Damjanovic L, Kaisermayer C, Kunert R. 2015. Benchmarking of commercially available CHO cell culture media for antibody production. Appl. Microbiol. Biotechnol. 99: 4645-4657.
    Pubmed CrossRef Pubmed Central
  36. Han JH, Choi YS, Kim WJ, Jeon YH, Lee SK, Lee BJ, et al. 2010. Codon optimization enhances protein expression of human peptide deformylase in E. coli. Protein Expr. Purif. 70: 224-230.
    Pubmed CrossRef
  37. Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, et al. 2011. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6: e17596.
    Pubmed CrossRef Pubmed Central
  38. Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J. Biol. Chem. 263: 15791-15798.
    Pubmed
  39. Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J. Biol. Chem. 263:19771-19777.
    Pubmed
  40. Butler M, Spearman M. 2014. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30: 107-112.
    Pubmed CrossRef
  41. Zhang P, Chan KF, Haryadi R, Bardor M, Song Z. 2013. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Adv. Biochem. Eng. Biotechnol. 131: 63-87.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd