Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-1: 37~43

AuthorGyo Won Oh, Yewon Kang, Chang-Yun Choi, So-Young Kang, Jung-Hyun Kang, Min-Jae Lee Lee, Nam Soo Han, Tae-Jip Kim
TitleDetailed Mode of Action of Arabinan-Debranching α-L-Arabinofuranosidase GH51 from Bacillus velezensis
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-1
AbstractThe gene encoding an α-L-arabinofuranosidase (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at 45oC. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively L-arabinose. BvAF could cleave α-(1,2)- and/or α-(1,3)-L-arabinofuranosidic linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate L-arabinose from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting α-L-arabinofuranosidase possessing high debranching activity towards α-(1,2)- and/or α-(1,3)-linked branches of arabinan, which can facilitate the successive degradation of arabinan by endo-α-(1,5)-Larabinanase.
Full-Text
Key_wordBacillus velezensis, α-L-arabinofuranosidase, arabinan-debranching activity, mode of action
References
  1. Hizukuri S. 1999. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46: 159-165.
    CrossRef
  2. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374.
    CrossRef
  3. Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T. 2007. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Technol. 18: 64-71.
    CrossRef
  4. Vigsnæs LK, Holck J, Meyer AS, Licht TR. 2011. In vitro fermentation of sugar beet arabino-oligosaccharides by fecal microbiota obtained from patients with ulcerative colitis to selectively stimulate the growth of Bifidobacterium spp. and Lactobacillus spp. Appl. Environ. Microbiol. 77: 8336-8344.
    Pubmed CrossRef Pubmed Central
  5. Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56.
    Pubmed CrossRef
  6. Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102:4277-4280.
    Pubmed CrossRef
  7. Park JM, Jang MU, Oh GW, Lee EH, Kang JH, Song YB, et al. 2015. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases. J. Microbiol. Biotechnol. 25: 227-233.
    Pubmed CrossRef
  8. Saha BC. 2000. α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423.
    CrossRef
  9. Numan MT, Bhosle NB. 2006. α-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260.
    Pubmed CrossRef
  10. Wilkens C, Andersen S, Dumon C, Berrin JG, Svensson B. 2017. GH62 arabinofuranosidases: Structure, function and applications. Biotechnol. Adv. 35: 792-804.
    Pubmed CrossRef
  11. Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 α-L-arabinofuranosidase. EMBO J. 22: 4922-4932.
    Pubmed CrossRef Pubmed Central
  12. Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, Kaneko S. 2010. Crystal structure of an exo-1,5-α-Larabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J. Biol. Chem. 285: 34134-34143.
    Pubmed CrossRef Pubmed Central
  13. de Sá-Nogueira I, Nogueira TV, Soares S, de Lencastre H. 1997. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143: 957-969.
    Pubmed CrossRef
  14. Inácio JM, Correia IL, de Sá-Nogueira I. 2008. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154: 2719-2729.
    Pubmed CrossRef
  15. Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y. 2011. The L-arabinan utilization system of Geobacillus stearothermophilus. J. Bacteriol. 193: 2838-2850.
    Pubmed CrossRef Pubmed Central
  16. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.
    Pubmed CrossRef Pubmed Central
  17. Leal TF, de Sá-Nogueira I. 2004. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241: 41-48.
    Pubmed CrossRef
  18. Inácio JM, de Sá-Nogueira I. 2008. Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J. Bacteriol. 190: 4272-4280.
    Pubmed CrossRef Pubmed Central
  19. Park JM, Han NS, Kim TJ. 2007. Rapid detection and isolation of known and putative α-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
    Pubmed
  20. Park JM, Jang MU, Kang JH, Kim MJ, Lee SW, Song YB, et al. 2012. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J. Microbiol. 50: 1041-1046.
    Pubmed CrossRef
  21. Miller GL. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.
    CrossRef
  22. Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol. 8: 22.
    Pubmed CrossRef Pubmed Central
  23. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. 2018. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491.
    Pubmed CrossRef Pubmed Central
  24. Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G. 2018. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech. 8:253.
  25. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.
    Pubmed CrossRef
  26. Miyazaki K. 2005. Hyperthermophilic α-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9: 399-406.
    Pubmed CrossRef
  27. Dumbrepatil A, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of α-L-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 17241730.
    CrossRef
  28. Lim YR, Yoon RY, Seo ES, Kim YS, Park CS, Oh DK. 2010. Hydrolytic properties of a thermostable α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J. Appl. Microbiol. 109:1188-1197.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd