Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-1: 114~126

AuthorSe-Ho Park, Jae-Yeul Lee, Hyun-Nam Cho, Kyoung-Ran Kim, Seun-Ah Yang, Hee-Joon Kim, Kwang-Hwan Jhee
Place of dutyDepartment of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Korea,Institute of Natural Science, Keimyung University, Daegu 42601, Korea
TitleSimple and Novel Assay of the Host-Guest Complexation of Homocysteine with Cucurbit[7]uril
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-1
AbstractThis paper introduces three ways to determine host-guest complexation of cucurbit[7]uril (CB[7]) with homocysteine (Hcy). After preincubating Hcy and cysteine (Cys) with CB[7], Ellman’s reagent (DTNB) was used to detect Hcy and Cys. Only Cys reacted with DTNB and Hcy gave a retarded color change. This suggests that the -SH group of Hcy is buried inside CB[7]. Human cystathionine γ-lyase (hCGL) decreased the level of Hcy degradation after preincubating Hcy and CB[7]. These results suggest that the amount of free Hcy available was decreased by the formation of a Hcy-CB[7] complex. The immunological signal of anti-Hcy monoclonal antibody was decreased significantly by preincubating CB[7] with Hcy. The ELISA results also show that ethanethiol group (-CH2CH2SH) of Hcy, which is an epitope of anti-Hcy monoclonal antibody, was blocked by the cavity in CB[7]. Overall, CB[7] can act as a host by binding selectively with Hcy, but not Cys. The calculated half-complexation formation concentration of CB[7] was 58.2 nmol using Ellman’s protocol, 97.9 nmol using hCGL assay and 87.7 nmol using monoclonal antibody. The differing binding abilities of Hcy and Cys towards the CB[7] host may offer a simple and useful method for determining the Hcy concentration in plasma or serum.
Full-Text
Key_wordHomocysteine, cucurbit[7]uril, DTNB, ELISA, human cystathionine γ-lyase
References
  1. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55: 1449-1455.
    Pubmed CrossRef
  2. Nygård O, Vollset SE, Refsum H, Stensvold I, Tverdal A, nordrehaug JE, et al. 1995. Total plasma homocysteine and cardiovascular risk profile: the Hordaland homocysteine study. JAMA 274: 1526-1533.
    Pubmed CrossRef
  3. Ueland PM, Refsum H, Beresford SA, Vollset SE. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72: 324-332.
    Pubmed CrossRef
  4. Özkan Y, Özkan E, Şimşek B. 2002. Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int. J. Cardiol. 82: 269-277.
    CrossRef
  5. Finkelstein J. 1998. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 157: S40-S44.
    Pubmed CrossRef
  6. Selhub J, Miller JW. 1992. The pathogenesis of homocysteinemia:interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 55: 131-138.
    Pubmed CrossRef
  7. Cho H-N, Jhee K-H. 2014. Direct conversion of Lselenomethionine into methylselenol by human cystathionine γ-lyase. Microbiol. Biotechnol. Lett. 42: 11-17.
    CrossRef
  8. Blom HJ, Smulders Y. 2011. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defect. J. Inherit. Metab. Dis. 34: 75-81.
    Pubmed CrossRef Pubmed Central
  9. Chen X, Jhee K-H, Kruger WD. 2004. Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 279: 52082-52086.
    Pubmed CrossRef
  10. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. 2008. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322: 587-590.
    Pubmed CrossRef Pubmed Central
  11. Kim K-R, Byun H-J, Cho H-N, Kim J-H, Yang S-A, Jhee K-H. 2011. Overexpression and activity analysis of cystathionine γ-lyase responsible for the biogenesis of H2S neurotransmitter. J. Life Sci. 21: 119-126.
    CrossRef
  12. Inoue T, Kirchhorff JR. 2002. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 74: 1349-1354.
    Pubmed CrossRef
  13. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127: 15949-15958.
    Pubmed CrossRef Pubmed Central
  14. Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc. 126: 438-439.
    Pubmed CrossRef Pubmed Central
  15. Wang J, Liu Y, Jiang M, Li Y, Xia L, Wu P. 2018. Aldehydefunctionalized metal-organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chem. Comm. 54: 1004-1007.
    Pubmed CrossRef
  16. Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 44: 6143-6160.
    Pubmed CrossRef
  17. Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, Bo Q. 2017. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173: 918-923.
    Pubmed CrossRef
  18. Wang W, Li L, Liu S, Ma C, Zhang S. 2008. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J. Am. Chem. Soc. 130: 10846-10847.
    Pubmed CrossRef
  19. Li J, Loh XJ. 2008. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev. 60: 1000-1017.
    Pubmed CrossRef
  20. Busschaert N, Caltagirone C, Van Rossom W, Gale PA. 2015. Applications of supramolecular anion recognition. Chem. Rev. 115: 8038-8155.
    Pubmed CrossRef
  21. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. 2015. Cucurbituril-based molecular recognition. Chem. Rev. 115: 12320-12406.
    Pubmed CrossRef
  22. Biedermann F, Nau WM. 2014. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Edit. 53: 5694-5699.
    CrossRef
  23. Gao Z-Z, Lin R-L, Bai D, Tao Z, Liu J-X, Xiao X. 2017. Hostguest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 7: 44717.
    Pubmed CrossRef Pubmed Central
  24. Freeman W, Mock W, Shih N. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368.
    CrossRef
  25. Masson E, Ling X. Joseph R. Kyeremeh-Mensah L, Lu X. 2012. Cucurbituril chemistry: a tale of supramolecular success. Rsc Advances. 2: 1213-1247.
    CrossRef
  26. Urbach AR. Ramalingam V. 2011. Molecular recognition of amino acids, peptides, and proteins by cucurbit [n] uril receptors. Israel J. Chem. 51: 664-678.
    CrossRef
  27. Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM. 2013. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J. 280: 6150-6161.
    Pubmed CrossRef Pubmed Central
  28. Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan C-H, et al. 2009. Structural basis for the inhibition mechanism of human cystathionine γ-lyase, an enzyme responsible for the production of H2S. J. Biol. Chem. 284:3076-3085.
    Pubmed CrossRef
  29. Kishiro Y, Kagawa M, Naito I, Sado Y. 1995. A novel method of preparing rat-monoclonal antibody-producing hybridomas by using rat medial iliac lymph node cells. Cell Struct. Funct. 20: 151-156.
    Pubmed CrossRef
  30. Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophy. 82: 70-77.
    CrossRef
  31. Okonjo KO, Fodeke AA. 2006. Reversible reaction of 5, 5’dithiobis (2-nitrobenzoate) with the hemoglobins of the domestic cat: acetylation of NH3 + terminal group of the β chain transforms the complex pH dependence of the forward apparent second order rate constant to a simple form. Biophy. Chem. 119: 196-204.
    Pubmed CrossRef
  32. Jhee K-H, McPhie P, Miles EW. 2000. Domain architecture of the heme-independent yeast cystathionine β-synthase provides insights into mechanisms of catalysis and regulation. Biochem. 39: 10548-10556.
    CrossRef
  33. Karlsson R, Michaelsson A, Mattsson L. 1991. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytic system. J. Immunol. Methods 145: 229-240.
    CrossRef
  34. Thuéry P. 2011. L-cysteine as a chiral linker in lanthanidecucurbit [6] uril one-dimensional assemblies. Inorg. Chem. 50: 10558-10560.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd