Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-3: 382~391

AuthorYun-Gi Hong, Yu-Mi Moon, Ju-Won Hong, Tae-RIm Choi, Hye-Rim Jung, Soo-Yeon Yang, Dae-Won Jang, Ye-Rim Park, Christopher J. Brigham, Jae-Seok Kim, Yoo-Kyung Lee, Yung-Hun Yang
Place of dutyKonkuk University, Republic of Korea
TitleDiscarded Egg Yolk as an Alternate Source of Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate)
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-3
AbstractMany poultry eggs are discarded worldwide because of infection (i.e., avian flu) or presence of high levels of pesticides. The possibility of adopting egg yolk as a source material to produce polyhydroxyalkanoate (PHA) biopolymer was examined in this study. Cupriavidus necator Re2133/pCB81 was used for the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) or poly(3HHx), a polymer that would normally require long-chain fatty acids as carbon feedstocks for the incorporation of 3HHx monomers. The optimal medium contained 5% egg yolk oil and ammonium nitrate as a nitrogen source, with a carbon/nitrogen (C/N) ratio of 20. Time course monitoring using the optimized medium was conducted for 5 days. Biomass production was 13.1 g/l, with 43.7% co-polymer content. Comparison with other studies using plant oils and the current study using egg yolk oil revealed similar polymer yields. Thus, discarded egg yolks could be a potential source of PHA.
Full-Text
Supplemental Data
Key_wordEgg yolk oil, Cupriavidus necator, medium optimization, feed stock, co-polymer
References
  1. Sparagano O, George D, Harrington D, Giangaspero A. 2014. Significance and control of the poultry red mite, Dermanyssus gallinae. Annu. Rev. Entomol. 59: 447-466.
    Pubmed CrossRef
  2. Kim HK, Lee SJ, Hwang B-Y, Yoon JU, Kim G-H. 2018. Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae). Exp. Appl. Acarol. 74: 404-413.
    Pubmed CrossRef
  3. Hu R, Huang X, Huang J, Li Y, Zhang C, Yin Y, et al. 2015. Long-and short-term health effects of pesticide exposure: a cohort study from China. PLoS One 10: e0128766.
    Pubmed CrossRef Pubmed Central
  4. Surai PF, Papazyan TT, Sparks NH, Speake BK. 2008. Simultaneous Enrichment of Eggs with PUFAs and Antioxidants, pp. 139-153. Wild-Type Food in Health Promotion and Disease Prevention, Ed. Springer,
  5. Palacios LE, Wang T. 2005. Extraction of egg-yolk lecithin. J. Am. Oil Chem. Soc. 82: 565-569.
    CrossRef
  6. Tokarska B, Clandinin MT. 1985. Extraction of egg yolk oil of reduced cholesterol content. J. Inst. Can. 18: 256-258.
    CrossRef
  7. Goodrow EF, Wilson TA, Houde SC, Vishwanathan R, Scollin PA, Handelman G, et al. 2006. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J. Nutr. 136:2519-2524.
    Pubmed CrossRef
  8. Bhatia SK, Yoon J-J, Kim H-J, Hong JW, Hong YG, Song H-S, et al. 2018. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour. Technol. 257: 92-101.
    Pubmed CrossRef
  9. Lee SY, Wong HH, Choi Ji, Lee SH, Lee SC, Han CS. 2000. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470.
    CrossRef
  10. Wang F, L ee S Y. 1 998. H igh cel l d ensity cul utre of metabolically engineered Escherichia coli for the production of poly (3-hydroxybutyrate) in a defined medium. Biotechnol. Bioeng. 58: 325-328.
    CrossRef
  11. Jo S-J, Matsumoto KI, Leong CR, Ooi T, Taguchi S. 2007. Improvement of poly (3-hydroxybutyrate)[P (3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P (3HB) biosynthetic genes. J. Biosci. Bioeng. 104: 457-463.
    Pubmed CrossRef
  12. Steinbüchel A, Valentin HE. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128: 219-228.
    CrossRef
  13. Ciesielski S, Możejko J, Pisutpaisal N. 2015. Plant oils as promising substrates for polyhydroxyalkanoates production. J. Clean Prod. 106: 408-421.
    CrossRef
  14. Guo-Qiang C, Jun X, Qiong W, Zengming Z, Kwok-Ping H. 2001. Synthesis of copolyesters consisting of medium-chainlength β-hydroxyalkanoates by Pseudomonas stutzeri 1317. React. Funct. Polym. 48: 107-112.
    CrossRef
  15. Matsusaki H, Abe H, Doi Y. 2000. Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1: 17-22.
    Pubmed CrossRef
  16. Bhatia SK, Bhatia RK, Yang Y-H. 2016. Biosynthesis of pol yesters a nd polyamide b uil ding b l ocks u sing m icrobial fermentation and biotransformation. Rev. Environ. Sci. Biotechnol. 15: 639-663.
    CrossRef
  17. Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZAM, Rha C, et al. 2012. Production of poly (3-hydroxybutyrate-co-3hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109: 74-83.
    Pubmed CrossRef
  18. Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, Yi D-H, Kim H, et al. 2014. Biosynthesis of poly (3-hydroxybutyrate-co-3hydroxyhexanoate)(P (HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol.98: 5461-5469.
    Pubmed CrossRef
  19. Sudesh K, Abe H, Doi Y. 2000. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25: 1503-1555.
    CrossRef
  20. Virov P. 2013. Polyhydroxyalkanoates: biodegradable polymers and plastics from renewable resources. Mater. Technol. 47: 5-12.
  21. Jeon J-M, Kim H-J, Bhatia SK, Sung C, Seo H-M, Kim J-H, et al. 2017. Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioprocess Biosyst. Eng. 40: 781-789.
    Pubmed CrossRef
  22. Bhatia SK, Kim J-H, Kim M-S, Kim J, Hong JW, Hong YG, et al. 2018. Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst. Eng. 41: 229-235.
    Pubmed CrossRef
  23. Kumar P , Mehariya S , Ray S, M ishra A, K al ia V C. 2 015. Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J. Microbiol. 55: 1-7.
    CrossRef
  24. Vastano M, Casillo A, Corsaro MM, Sannia G, Pezzella C. 2015. Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant Escherichia coli. Eng. Life Sci. 15: 700-709.
    CrossRef
  25. Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, et al. 2013. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animalderived waste. J. Biotechnol. 165: 45-51.
    Pubmed CrossRef
  26. Titz M, Kettl K-H, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. 2012. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol. Environ. 14: 495-503.
    CrossRef
  27. Budde CF, Riedel SL, Hübner F, Risch S, Popović MK, Rha C, et al. 2011. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl. Microbiol. Biotechnol. 89: 1611-1619.
    Pubmed CrossRef
  28. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, et al. 2005. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6: 561-565.
    Pubmed CrossRef
  29. Obruca S, Benesova P, Kucera D, Petrik S, Marova I. 2015. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. N. Biotechnol. 32:569-574.
    Pubmed CrossRef
  30. Kahar P , Tsuge T, T aguchi K , Doi Y . 2004. H igh yiel d production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stab. 83: 79-86.
    CrossRef
  31. Sun Z, Ramsay JA, Guay M, Ramsay BA. 2007. Fermentation process development for the production of medium-chainlength poly-3-hyroxyalkanoates. Appl. Microbiol. Biotechnol.75: 475-485.
    Pubmed CrossRef
  32. Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ. 2010. Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J. Bacteriol. 192: 5319-5328.
    Pubmed CrossRef Pubmed Central
  33. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ. 2011. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77: 2847-2854.
    Pubmed CrossRef Pubmed Central
  34. Kovalcuks A, Duma M. 2014. Solvent extraction of egg oil from liquid egg yolk, pp.253-256. In 9th Baltic Conference on Food Science and Technology “Food for Consumer WellBeing” FOODBALT 2014, Jelgava, Latvia. Latvia University of Agriculture, Faculty of Food Technology
  35. Bhatia SK, Shim Y-H, Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, et al. 2015. Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst. Eng. 38: 1479-1484.
    Pubmed CrossRef
  36. Braunegg G, Sonnleitner B, Lafferty R. 1978. A rapid gas chromatographic method for the determination of poly-βhydroxybutyric acid in microbial biomass. Appl. Microbiol Biotechnol. 6: 29-37.
    CrossRef
  37. Yang Y-H, Jeon J-M, Kim J-H, Seo H-M, Rha C, Sinskey AJ, et al. 2015. Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly (3-hydroxybutyrateco3-hydroxyvalerate)[P (HB-co-HV)] from bacterial cells. Biotechnol. Bioproc. E. 20: 291-297.
    CrossRef
  38. Gouda MK, Swellam AE, Omar SH. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156: 201-207.
    Pubmed CrossRef
  39. Tripathi L, Wu L-P, Chen J, Chen G-Q. 2012. Synthesis of Diblock copolymer poly-3-hydroxybutyrate-block-poly-3hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb. Cell Fact. 11: 44.
    Pubmed CrossRef Pubmed Central
  40. Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, et al. 2015. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214: 119-127.
    Pubmed CrossRef
  41. Sommer D, Heffels-Redmann U, Köhler K, Lierz M, Kaleta E. 2016. Role of the poultry red mite (Dermanyssus gallinae) in the transmission of avian influenza A virus. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 44: 26-33.
    Pubmed CrossRef
  42. Maroni M, Fait A. 1993. Health effects in man from longterm exposure to pesticides. A review of the 1975-1991 literature. Toxicology 78: 1-180.
    Pubmed
  43. Tabari MA, Youssefi MR, Benelli G. 2017. Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitol. Res. 116: 1545-1551.
    Pubmed CrossRef
  44. Authority EFS, Reich H, Triacchini GA. 2018. Occurrence of residues of fipronil and other acaricides in chicken eggs and poultry muscle/fat. EFSA J. 16: e05164.
  45. Polder A, Müller M, Brynildsrud O, De Boer J, Hamers T, Kamstra J, et al. 2016. Dioxins, PCBs, chlorinated pesticides and brominated flame retardants in free-range chicken eggs from peri-urban areas in Arusha, Tanzania: levels and implications for human health. Sci. Total Environ. 551: 656-667.
    Pubmed CrossRef
  46. Lu J, Brigham CJ, Rha C, Sinskey AJ. 2013. Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Appl. Microbiol. Biotechnol. 97: 2443-2454.
    Pubmed CrossRef
  47. Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I. 2014. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 98: 5883-5890.
    Pubmed CrossRef
  48. Ahn DU, Lee SH, Singam H, Lee EJ, Kim JC. 2006. Sequential separation of main components from chicken egg yolk. Food Sci. Biotechnol. 15: 189.
  49. Froning G, Wehling R, Cuppett S, Pierce M, Niemann L, Siekman D. 1990. Extraction of cholesterol and other lipids from dried egg yolk using supercritical carbon dioxide. J. Food Sci. 55: 95-98.
    CrossRef
  50. Larsen J, Froning G. 1981. Extraction and processing of various components from egg yolk. Poult. Sci. 60: 160-167.
    CrossRef
  51. Palacios LE, Wang T. 2005. Egg-yolk lipid fractionation and lecithin characterization. J. Am. Oil Chem. Soc. 82: 571-578.
    CrossRef
  52. Warren M, B rown H , Davis D. 1 988. S ol vent e xtraction of lipid components from egg yolk solids. J. Am. Oil Chem. Soc.65: 1136-1139.
    CrossRef
  53. Romanoff AL, Romanoff AJ. 1949. The avian egg. 918pp. CAB Direct.
  54. Reichardt C, Welton T. 2011. Solvents and solvent effects in organic chemistry, pp. Ed. John Wiley & Sons.
  55. Li L, Du W, Liu D, Wang L, Li Z. 2006. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B: Enzym. 43: 58-62.
    CrossRef
  56. Nielsen PM, Brask J, Fjerbaek L. 2008. Enzymatic biodiesel production: technical and economical considerations. Eur. J. Lipid Sci. Technol. 110: 692-700.
    CrossRef
  57. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y. 2002. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B:Enzym. 17: 151-155.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd