Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-1: 127~140

AuthorHae Li Ko, Hyo-Jung Park, Jihye Kim, Ha Kim, Hyewon Youn, Jae-Hwan Nam
Place of dutyDepartment of Biotechnology, The Catholic University of Korea, Bucheon, Korea
TitleDevelopment of an RNA Expression Platform Controlled by Viral Internal Ribosome Entry Sites
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-1
AbstractSince 1990, many nucleic acid expression platforms consisting of DNA or RNA have been developed. However, although RNA expression platforms have been relatively neglected, several such platforms capped at the 5’ end of RNA by an anti-reverse cap analog have now been developed. At the same time, the capping reaction is a bottleneck in the production of such platforms, with high cost and low efficiency. Here, we investigated several viral and eukaryotic internal ribosome entry sites (IRESs) to develop an optimal RNA expression platform, because IRES-dependent translation does not require a capping step. RNA expression platforms constructed with IRESs from the 5’ untranslated regions of the encephalomyocarditis virus (EMCV) and the intergenic region of the cricket paralysis virus (CrPV) showed sufficient expression efficiency compared with cap-dependent RNA expression platforms. However, eukaryotic IRESs exhibited a lower viral IRES expression efficiency. Interestingly, the addition of a poly(A) sequence to the 5’ end of the coxsackievirus B3 (CVB3) IRES (pMA-CVB3) increased the expression level compared with the CVB3 IRES without poly(A) (pCVB3). Therefore, we developed two multiexpression platforms (termed pMA-CVB3-EMCV and pCrPV-EMCV) by combining the IRESs of CVB3, CrPV, and EMCV in a single-RNA backbone. The pMA-CVB3-EMCV-derived RNA platform showed the highest expression level. Moreover, it clearly exhibited expression in mouse muscles in vivo. These RNA expression platforms prepared using viral IRESs will be useful in developing potential RNA-based prophylactic or therapeutic vaccines, because they have better expression efficiency and do not need a capping step.
Full-Text
Supplemental Data
Key_wordInternal ribosome entry sites, RNA expression platform, coxsackievirus B3, cricket paralysis virus, encephalomyocarditis virus, poly(A)
References
  1. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. 1990. Direct gene transfer into mouse muscle in vivo. Science 247: 1465-1468.
    Pubmed CrossRef
  2. Marć MA, Domínguez-Álvarez E, Gamazo C. 2015. Nucleic acid vaccination strategies against infectious diseases. Expert. Opin. Drug Deliv. 12: 1851-1865.
    Pubmed CrossRef
  3. Sahin U, Karikó K, Türeci Ö. 2014. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13: 759-780.
    Pubmed CrossRef
  4. Kallen KJ, Theß A. 2014. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther. Adv. Vaccines 2: 10-31.
    Pubmed CrossRef Pubmed Central
  5. Probst J, Fotin-Mleczek M, Schlake T, Thess A, Kramps T, Kallen KJ. 2012. Messenger RNA vaccines. In: Thalhamer J., Weiss R., Scheiblhofer S, editors. Gene vaccines. Vienna:Springer Verlag Wein; pp. 223-245.
    CrossRef
  6. Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, et al. 2013. A novel, disruptive vaccination technology: self-adjuvanted RNActive vaccines. Hum. Vaccin Immunother. 9: 2263-2276.
    Pubmed CrossRef Pubmed Central
  7. Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, et al. 2012. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 14: 428-439.
    Pubmed CrossRef
  8. Geall AJ, Mandl CW, Ulmer JB. 2013. RNA: The new revolution in nucleic acid vaccines. Semin Immunol. 25: 152159.
    Pubmed CrossRef
  9. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. 2012. Developing mRNA-vaccine technologies. RNA Biol. 9: 13191330.
    Pubmed CrossRef Pubmed Central
  10. Iavarone C, O’Hagan DT, Yu D, Delahaye NF, Ulmer JB. 2017. Mechanism of action of mRNA-based vaccines. Expert. Rev. Vaccines 16: 871-881.
    Pubmed CrossRef
  11. Akhrymuk I, Kulemzin SV, Frolova EI. 2012. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 86: 7180-7191.
    Pubmed CrossRef Pubmed Central
  12. Hollidge BS, Weiss SR, Soldan SS. 2011. The role of interferon antagonist, non-structural proteins in the pathogenesis and emergence of arboviruses. Viruses 3: 629-658.
    Pubmed CrossRef Pubmed Central
  13. Blakqori G, Delhaye S, Habjan M, Blair CD, Sánchez-Vargas I, Olson KE, et al. 2007. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J. Virol. 81: 4991-4999.
    Pubmed CrossRef Pubmed Central
  14. Ngoi SM, Chien AC, Lee CG. 2004. Exploiting internal ribosome entry sites in gene therapy vector design. Curr. Gene Ther. 4: 15-31.
    Pubmed CrossRef
  15. Mailliot J, Martin F. 2018. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev. RNA 9: e1458.
    Pubmed CrossRef
  16. Yamamoto H, Unbehaun A, Spahn CMT. 2017. Ribosomal chamber music: toward an understanding of IRES mechanisms. Trends Biochem. Sci. 42: 655-668.
    Pubmed CrossRef
  17. Pelletier J, Sonenberg N. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320-325.
    Pubmed CrossRef
  18. Kieft JS. 2008. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 33: 274-283.
    Pubmed CrossRef Pubmed Central
  19. Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. 2016. Structural characterization of ribosome recruitment and translocation by type IV IRES. Elife 5: e13567.
    Pubmed CrossRef Pubmed Central
  20. Cho A, Seok SH. 2013. Ethical guidelines for use of experimental animals in biomedical research. J. Bacteriol. Virol. 43: 18-26.
    CrossRef
  21. Wong ET, Ngoi SM, Lee CG. 2002. Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Ther. 9: 337-344.
    Pubmed CrossRef
  22. Chiang PW, Carpenter LE, Hagerman PJ. 2001. The 5¢untranslated region of the FMR1 message facilitates translation by internal ribosome entry. J. Biol. Chem. 276: 37916-37921.
    Pubmed
  23. Filley CM, Brown MS, Onderko K, Ray M, Bennett RE, Berry-Kravis E, et al. 2015. White matter disease and cognitive impairment in FMR1 premutation carriers. Neurology 84: 2146-2152.
    Pubmed CrossRef Pubmed Central
  24. Schiavi A, Hudder A, Werner R. 1999. Connexin43 mRNA contains a functional internal ribosome entry site. FEBS Lett. 464: 118-122.
    CrossRef
  25. Bernstein J, Sella O, Le SY, Elroy-Stein O. 1997. PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J. Biol. Chem. 272: 9356-9362.
    Pubmed CrossRef
  26. Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H, et al. 1998. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol. Cell Biol. 18: 61786190.
    CrossRef
  27. Goodfellow I. 2011. The genome-linked protein VPg of vertebrate viruses—a multifaceted protein. Curr. Opin. Virol. 1: 355-362.
    Pubmed CrossRef Pubmed Central
  28. Sean P, Semler BL. 2008. Coxsackievirus B RNA replication:lessons from poliovirus. Curr. Top. Microbiol. Immunol. 323:89-121.
    Pubmed CrossRef
  29. Langereis MA, Feng Q, Nelissen FH, Virgen-Slane R, van der Heden van Noort GJ, Maciejewski S, et al. 2014. Modification of picornavirus genomic RNA using ‘click’ chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA. Nucleic Acids Res. 42: 2473-2482.
    Pubmed CrossRef Pubmed Central
  30. Sköld AE, van Beek JJ, Sittig SP, Bakdash G, Tel J, Schreibelt G, et al. 2015. Protamine-stabilized RNA as an ex vivo stimulant of primary human dendritic cell subsets. Cancer Immunol. Immunother. 64: 1461-1473.
    Pubmed CrossRef Pubmed Central
  31. Scheel B, Teufel R, Probst J, Carralot JP, Geginat J, Radsak M, et al. 2005. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol. 35: 1557-1566.
    Pubmed CrossRef
  32. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. 2012. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 30: 1210-1216.
    Pubmed CrossRef
  33. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. 2017. Modified mRNA vaccines protect against Zika virus infection. Cell 169: 176.
    Pubmed CrossRef
  34. Avogadri F, Merghoub T, Maughan MF, HirschhornCymerman D, Morris J, Ritter E, et al. 2010. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PLoS One 5: e12670.
    Pubmed CrossRef Pubmed Central
  35. Seregin SS, Appledorn DM, McBride AJ, Schuldt NJ, Aldhamen YA, Voss T, et al. 2009. Transient pretreatment with glucocorticoid ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. Mol. Ther. 17: 685-696.
    Pubmed CrossRef Pubmed Central
  36. Pyankov OV, Bodnev SA, Pyankova OG, Solodkyi VV, Pyankov SA, Setoh YX, et al. 2015. A Kunjin replicon viruslike particle vaccine provides protection against Ebola virus infection in nonhuman primates. J. Infect. Dis. 212(Suppl 2):S368-S371.
    Pubmed CrossRef Pubmed Central
  37. Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, et al. 2016. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 10: e0004746.
    Pubmed CrossRef Pubmed Central
  38. Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, et al. 2014. A cationic nanoemulsion for the delivery of nextgeneration RNA vaccines. Mol. Ther. 22: 2118-2129.
    Pubmed CrossRef Pubmed Central
  39. Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. 2017. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25: 1316-1327.
    Pubmed CrossRef Pubmed Central
  40. Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. 2017. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, nonrandomised, prospective, first-in-human phase 1 clinical trial. Lancet 390: 1511-1520.
    CrossRef
  41. Youn H, Chung JK. 2015. Modified mRNA as an a lternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert. Opin. Biol. Ther. 15: 1337-1348.
    Pubmed CrossRef Pubmed Central
  42. Diken M, Kranz LM, Kreiter S, Sahin U. 2017. mRNA: A versatile molecule for cancer vaccines. Curr. Issues Mol. Biol. 22: 113-128.
    Pubmed CrossRef
  43. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. 2016. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396-401.
    Pubmed CrossRef
  44. Dickson KA, Haigis MC, Raines RT. 2005. Ribonuclease inhibitor: structure and function. Prog. Nucleic Acid. Res Mol. Biol. 80: 349-374.
    CrossRef
  45. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. 2012. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 109: 14604-14609.
    Pubmed CrossRef Pubmed Central
  46. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. 2001. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 29: 3882-3891.
    Pubmed CrossRef Pubmed Central
  47. Leppek K, Das R, Barna M. 2018. Functional 5¢ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19: 158-174.
    CrossRef
  48. Simoes EA, Sarnow P. 1991. An RNA hairpin at the extreme 5’ end of the poliovirus RNA genome modulates viral translation in human cells. J. Virol. 65: 913-921.
    Pubmed Pubmed Central
  49. Andino R, Rieckhof GE, Baltimore D. 1990. A functional ribonucleoprotein complex forms around the 5’ end of poliovirus RNA. Cell 63: 369-380.
    CrossRef
  50. Herold J, Andino R. 2007. Poliovirus requires a precise 5’ end for efficient positive-strand RNA synthesis. J. Virol. 74:6394-400.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd