Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-3: 419~428

AuthorJiadi Li, Xinli Li, Yuanming Gai, Yumei Sun, Dawei Zhang
Place of dutyDalian Polytechnic University, P.R. China,Chinese Academy of Sciences, P.R. China,Chinese Academy of Sciences, P.R. China
TitleEvolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-3
AbstractPhytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes’ low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at 90°C for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.
Full-Text
Key_wordPhytase, B-value, protein surface engineering, thermostability
References
  1. Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu Rev. Anim Biosci. 1: 283-309.
    Pubmed CrossRef
  2. Yin HF, Fan BL, Yang B, Liu YF, Luo J, Tian XH, et al. 2006. Cloning of pig parotid secretory protein gene upstream promoter and the establishment of a transgenic mouse model expressing bacterial phytase for agricultural phosphorus pollution control. J. Animal Sci. 84: 513-519.
    Pubmed CrossRef
  3. Lei XG, Porres JM, Mullaney EJ, Brinchpedersen H. 2007. Phytase: Source, Structure and Application, pp. 505-529. In Polaina J, MacCabe AP (eds.), Industrial enzymes: Structure, function and applications, Ed. Springer, New York.
  4. Reetz MT, Peyralans JJ, Maichele A, Fu Y, Maywald M. 2006. Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein. Chem. Commun. 41: 4318-4320.
    Pubmed CrossRef
  5. Herger M, van Roye P, Romney DK, Brinkmann-Chen S, Buller AR, Arnold FH. 2016. Synthesis of beta-branched tryptophan analogues using an engineered subunit of tryptophan synthase. J. Am. Chem. Soc. 138: 8388-8391.
    Pubmed CrossRef Pubmed Central
  6. Gabriel J. Rocklin TMC, Inna Goreshnik, Alex Ford, Scott Houliston, et al. 2017. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357: 168-175.
    Pubmed CrossRef Pubmed Central
  7. Reetz MT, Soni P, Fernandez L, Gumulya Y, Carballeira JD. 2010. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem. Commun (Camb). 46: 8657-8658.
    Pubmed CrossRef
  8. Acevedo JP, Reetaz MT, Asenjo JA, Parra LP. 2017. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Enzyme Microb. Technol. 100: 60-70.
    Pubmed CrossRef
  9. Stemmer WP. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Nat. Acad. Sci. USA 91: 10747-10751.
    Pubmed CrossRef
  10. Chen K, Arnold FH. 1993. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Nat. Acad. Sci. USA 90: 5618-5622.
    Pubmed CrossRef
  11. Shivange AV, Roccatano D, Schwaneberg U. 2016. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl. Microbio. Biotechnol. 100: 227-242.
    Pubmed CrossRef
  12. Mootapally CS, Nathani NM, Patel AK, Jakhesara SJ, Joshi CG. 2016. Mining of ruminant microbial phytase (RPHY1) from metagenomic data of mehsani buffalo breed:identification, gene cloning, and characterization. J. Mol. Microbiol. Biotechnol. 26: 252-260.
    Pubmed CrossRef
  13. Mittal A, Singh G, Goyal V, Yadav A. 2011. Isolation and biochemical characterization of acido-thermophilic extracellular phytase producing bacterial strain for potential application in poultry feed. Jundishapur. J. Microbio. 4: 273-282.
  14. Singh B, Satyanarayana T. 2011. Phytases from thermophilic molds: Their production, characteristics and multifarious applications. Process Biochem. 46: 1391-1398.
    CrossRef
  15. Hesampour A, Siadat SE, Malboobi MA, Mohandesi N, Arab SS, Ghahremanpour MM. 2015. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl. Biochem. Biotechnol. 175: 25-28.
    Pubmed CrossRef
  16. Xin GL, Porres JM. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794.
    CrossRef
  17. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418.
    Pubmed CrossRef
  18. Luo H, Huang H, Yang P, Wang Y, Yuan T, Wu N, et al. 2007. A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr. Microbiol. 55: 185-192.
    Pubmed CrossRef
  19. Fei B , Xu H , Cao Y, M a S, G uo H , Song T , et al. 2013. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J. Ind. Microbiol. Biotechnol. 40: 457-464.
    Pubmed CrossRef
  20. Shivange AV, Schwaneberg U, Roccatano D. 2010. Conformational dynamics of active site loop in Escherichia coli phytase. Biopolymers 93: 994-1002.
    Pubmed CrossRef
  21. Noorbatcha IA, Sultan AM, Salleh HM, Amid A. 2013. Understanding thermostability factors of Aspergillus niger PhyA phytase: a molecular dynamics study. Protein J. 32:309-316.
    Pubmed CrossRef
  22. Fei B, Cao Y, Xu H, Li X, Song T, Fei Z, et al. 2013. AppA Cterminal plays an important role in its thermostability in Escherichia coli. Curr. Microbiol. 66: 374-378.
    Pubmed CrossRef
  23. Fei B, Xu H, Zhang F, Li X, Ma S, Cao Y, et al. 2013. Relationship between Escherichia coli AppA phytase’s thermostability and salt bridges. J. Biosci. Bioeng. 115: 623-627.
    Pubmed CrossRef
  24. Berkmen M, Boyd D, Beckwith J. 2005. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase.J. Biol. Chem. 280: 11387-11394.
    Pubmed CrossRef
  25. Wu TH, Chen CC, Cheng YS, Ko TP, Lin CY, Lai HL, et al. 2014. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J. Biotechnol. 175: 1-6.
    Pubmed CrossRef
  26. Haiquan Yang, Xinyao Lu, Long Liu, Jianghua Li, Hyundong Shin, et al. 2013. Fusion of an oligopeptide to the N terminus of an alkaline α-amylase from Alkalimonas amylolytica simultaneously improves the enzyme’s catalytic efficiency, thermal stability, and resistance to oxidation. Appl. Environ. Microbiol. 79: 3049-3058.
    CrossRef
  27. M.R.N.Murthy SP. 2000. Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng. 13: 9-13.
    Pubmed CrossRef
  28. Reetz MT, Carballeira JD, Vogel A. 2006. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. Engl. 45: 7745-7751.
    Pubmed CrossRef
  29. Sutiono S, Carsten J, Sieber V. 2018. Structure-guided engineering of alpha-keto acid decarboxylase for the production of higher alcohols at elevated temperature. ChemSusChem. 11: 3334-3344.
    Pubmed CrossRef
  30. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
    Pubmed CrossRef
  31. Studier FW. 2005. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41: 207-234.
    Pubmed CrossRef
  32. Liu ZQ, Mahmood T, Yang PC. 2012. Western blot:technique, theory and trouble shooting. N. Am. J. Med. Sci. 4: 429-434.
    Pubmed CrossRef Pubmed Central
  33. Yin QQ, Zheng QH, Kang XT. 2007. Biochemical characteristics of phytases from fungi and the transformed microorganism. Anim. Feed Sci. Technol. 132: 341-350.
    CrossRef
  34. Gooch JW. 2011. Lineweaver-Burk Plot. pp. 904-904. Encyclopedic Dictionary of Polymers. Ed. Springer New York.
  35. Lim D, Golovan S, Forsberg CW, Jia Z. 2000. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108-113.
    Pubmed CrossRef
  36. Martin A, Schmid FSV. 2001. In-vitro selection of highly stabilized protein variants with optimized surface. J. Mol. Biol. 309: 717-726.
    Pubmed CrossRef
  37. Alsop E, Silver M, Livesay DR. 2003. Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis. Protein Eng. 16: 871-874.
    Pubmed CrossRef
  38. Reetz MT, Carballeira JD. 2007. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2: 891-903.
    Pubmed CrossRef
  39. Quezada AG, Diaz-Salazar AJ, Cabrera N, Perez-Montfort R, Pineiro A, Costas M. 2017. Interplay between protein thermal flexibility and kinetic stability. Structure 25: 167-179.
    Pubmed CrossRef
  40. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, et al. 2004. Protein flexibility and intrinsic disorder. Protein Soc. 13: 71-80.
    Pubmed CrossRef Pubmed Central
  41. Menéndezarias L, Argos P. 1989. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J. Mol. Biol. 206: 397-406.
  42. Xiao S, Patsalo V, Shan B, Bi Y, Green DF, Raleigh DP. 2013. Rational modification of protein stability by targeting surface sites leads to complicated results. Proc. Natl. Acad. Sci. USA 110: 11337-11342.
    Pubmed CrossRef Pubmed Central
  43. Vogt G, Argos P. 1997. Protein thermal stability: hydrogen bonds or internal packing? Folding Design. 2: S40-S46.
    CrossRef
  44. B Garrett J, A Kretz K, O’Donoghue E, Kerovuo J, Kim W, R Barton N, et al. 2004. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol. 70:3041-3046.
    CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd