Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-3: 392~400

AuthorFangyu Cheng, Sijin Luozhong, Huimin Yu, Zhigang Guo
Place of dutyDepartment of Chemical Engineering, Tsinghua University, China,Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, China
TitleBiosynthesis of Chondroitin in Engineered Corynebacterium glutamicum
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-3
AbstractChondroitin, the precursor of chondroitin sulfate, which is an important polysaccharide, has drawn significant attention due to its applications in many fields. In the present study, a heterologous biosynthesis pathway of chondroitin was designed in a GRAS (generally recognized as safe) strain C. glutamicum. CgkfoC and CgkfoA genes with host codon preference were synthesized and driven by promoter Ptac, which was confirmed as a strong promoter via GFPuv reporter assessment. In a lactate dehydrogenase (ldh) deficient host, intracellular chondroitin titer increased from 0.25 to 0.88 g/l compared with that in a wild-type host. Moreover, precursor enhancement via overexpressing precursor synthesizing gene ugdA further improved chondroitin titers to 1.09 g/l. Chondroitin production reached 1.91 g/l with the engineered strain C. glutamicum ΔL-CgCAU in a 5-L fed-batch fermentation with a single distribution Mw of 186 kDa. This work provides an alternative, safe and novel means of producing chondroitin for industrial applications.
Supplemental Data
Key_wordChondroitin biosynthesis, engineered Corynebacterium glutamicum, lactate dehydrogenase deficient, precursor enhancement, fed-batch fermentation
  1. Vá zquez JA, Rodríguezamado I, Montemayor MI, Fraguas J, González MDP, Murado MA. 2013. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and ecofriendly processes: a review. Mar. Drugs. 11: 747-774.
  2. Schiraldi C, Cimini D, De Rosa M. 2010. Production of chondroitin sulfate and chondroitin. Appl. Microniol. Biot. 87:1209-1220.
    Pubmed CrossRef
  3. Roma n E, Roberts I, Lidholt K, Kusche-Gullberg M. 2003. Overexpression of udp-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of k5 polysaccharide. Biochem. J. 374: 767-772.
  4. Kwok JC, Warren P, Fawcett JW. 2012. Chondroitin sulfate:a key molecule in the brain matrix. Int. J. Biochem. Cell Biol. 44: 582-586.
    Pubmed CrossRef
  5. Lauder R. 2009. Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement. Ther. Med. 17: 56-62.
    Pubmed CrossRef
  6. Mikami T, Kitagawa H. 2013. Biosynthesis and function of chondroitin sulfate. BBA-Gen. Subjuects 1830: 4719-4733.
    Pubmed CrossRef
  7. He W, Zhu Y, Shirke A, Sun X, Liu J, Gross RA, Koffas MAG, Linhardt RJ, Li M. 2017. Expression of chondroitin-4 O-sulfotransferase in Escherichia coli and Pichia pastoris. Appl.Microbiol. Biotechnol. 101: 6919-6928.
    Pubmed CrossRef
  8. Badri A, Williams A, Linhardt R J, Koffas M A G. 2017. The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr. Opin. Biotechnol. 53: 85-92.
    Pubmed CrossRef
  9. Williams A, Linhardt R J, Koffas M A G. 2018. Metabolic engineering of capsular polysaccharides. Emerg Top Life Sci.2: 337-348.
  10. Rodriguez ML, Jann B, Jann K. 2010. Structure and serological characteristics of the capsular k4 antigen of escherichia coli, O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. Eur. J. Biochem. 177: 117-124.
  11. B edini E, De Castro C, De Rosa M, Di Nola A, Iadonisi A, Restaino OF, et al. 2011. A microbiological-chemical strategy to produce chondroitin sulphate A, C. Angew. Chem. Int. Ed. Engl. 50: 6160-6163.
  12. Ci mini D, Fantaccione S, Volpe F, De RM, Restaino OF, Aquino G. 2014. IS2-mediated overexpression of Kfoc in E. coli K4 increases chondroitin-like capsular polysaccharide production. Appl. Microbiol. Biotechnol. 98: 3955-3964.
  13. Z hang Q, Yao R, Chen X, Liu L, Xu S, Chen J. 2018. Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors. Metab. Eng. 47:314-322.
    Pubmed CrossRef
  14. Wiles TJ, Kulesus RR, Mulvey MA. 2008. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 85: 11-19.
    Pubmed CrossRef Pubmed Central
  15. H e W, Fu L, Li G, Andrew JJ, Linhardt RJ, Koffas M. 2015. Production of chondroitin in metabolically engineered E. coli. Metab. Eng. 27: 92-100.
    Pubmed CrossRef
  16. J in P, Zhang L, Yuan P, Kang Z, Du G, Chen J. 2016. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr. Polym. 140: 424-432.
    Pubmed CrossRef
  17. Zh ou Z. Li Q, Huang H, Wang H, Wang Y, Du G, Chen J, Kang Z. 2018. A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol. Bioeng. 115: 1561-1570.
  18. Guo Y, Han M, Yan W, Xu J, Zhang W. 2014. Generation of branched-chain amino acids resistant Corynebacterium glutamicum, acetohydroxy acid synthase by site-directed mutagenesis. Biotechnol. Bioproc. E. 19: 456-467.
  19. N eshat A, Mentz A, Rückert C, Kalinowski J. 2014. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J. Biotechnol. 190: 55-63.
  20. Xu JZ, Wu ZH, Gao SJ, Zhang W. 2018. Rational modification of tricarboxylic acid cycle for improving llysine production in Corynebacterium glutamicum. Microb. Cell Fact. 17: 105.
    Pubmed CrossRef Pubmed Central
  21. Z hang Y, Shang X, Lai S, Zhang Y, Hu Q, Chai X, et al. 2018. Reprogramming one-carbon metabolic pathways to decouple l-serine catabolism from cell growth in Corynebacterium glutamicum. Acs Synth. Biol. 101: 1-12.
  22. Ch eng F, Gong Q, Yu H, Stephanopoulos G. 2016. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11: 574-584.
  23. Chen g F, Luozhong S, Guo Z, Yu H, Stephanopoulos G. 2017. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotech. J. 12: 1700268.
  24. Sambrook J, Fritsch EF, Maniatis T. 1988. Molecular cloning:A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  25. Sch afer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994 Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73.
  26. Bitter T, Muir HM. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334.
  27. Cra meri A, Whitehorn EA, Tate E, Stemmer WP. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14: 315-319.
  28. Sh ang X, Chai X, Lu X, Li Y, Zhang Y, Wang, G, et al. 2018. Native promoters of Corynebacterium glutamicum and its application in L-lysine production. Biotechnol. Lett. 40: 383-391.
  29. Liu Q, Ouyang S, Kim J , Chen G. 2007. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 123: 273-279.
    Pubmed CrossRef
  30. Cim ini D, Carlino E, Giovane A, Argenzio O, Dello Iacono I, De Rosa M, et al. 2016. Engineering a branch of the UDPprecursor biosynthesis pathway enhances the production of capsular polysaccharide in Escherichia coli O5:K4:H4. Biotechnol. J. 33: 1307-1315.
  31. P átek M, Holátko J, Busche T, Kalinowski J, Nešvera J. 2013. Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6: 103-117.
  32. Kaur M., Jayaraman G. 2016. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab. Eng. Commun. 3: 15-23.
    Pubmed CrossRef Pubmed Central
  33. Wid ner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, et al. 2005. Hyaluronic acid p roduction in Bacillus subtilis. Appl. Environ. Microbiol. 71: 3747-3752.
  34. West brook AW, Ren X, Oh J, Mooyoung M, Chou CP. 2018. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab. Eng. 47: 401-413.
  35. Ya ng J, Cheng F, Yu H, Wang J, Guo Z, Stephanopoulos G. 2017. Key role of the carboxyl terminus of hyaluronan synthase in processive synthesis and size control of hyaluronic acid polymers. Biomacromolecules 18: 1064-1073.

Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by, Ltd