Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-4: 596~606

AuthorWensong Jin, Hui Lin, Huifang Gao, Zewang Guo, Jiahuan Li, Quanming Xu, Shujing Sun, Kaihui Hu, Jung-Kul Lee, Liaoyuan Zhang
Place of dutyCollege of Life Sciences, Fujian Agriculture and Forestry University, P.R. China,Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, P.R. China
TitleN-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-4
AbstractN-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ΔswrI with or without supplementing exogenous N-hexanoyl-L-homoserine lactone (C6-HSL) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing C6-HSL. Furthermore, fermentation product analysis indicated that ΔswrI could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ΔswrI appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, α-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.
Full-Text
Supplemental Data
Key_wordSerratia marcescens MG1, N-acyl-homoserine lactone quorum sensing, acidogenesis, solventogenesis, switch
References
  1. Papenfort K, Bassler BL. 2016. Quorum sensing signalresponse systems in Gram-negative bacteria. Nat. Rev.Microbiol. 14: 576-588.
    CrossRef
  2. Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551:313-320.
    Pubmed CrossRef Pubmed Central
  3. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR.2018. Bacterial quorum sensing and microbial community interactions. MBio 9.
    CrossRef
  4. Zhou J , L yu Y , R ichlen M , A nderson D M, C ai Z . 2016. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRC Crit. Rev. Plant Sci. 35: 81-105.
    CrossRef
  5. Mangwani N, Kumari S, Das S. 2016. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol. Genet. Eng. Rev. 32: 43-73.
    CrossRef
  6. Givskov M, Olsen L , Molin S. 1988. C loning and expression in Escherichia coli of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J. Bacteriol. 170: 5855-5862.
    CrossRef
  7. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S. 2005. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J. Bacteriol. 187: 3477-3485.
    CrossRef
  8. Givskov M, Eberl L, Molin S. 1997. Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol. Lett. 148: 115-122.
    CrossRef
  9. Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M. 1998. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384-6388.
  10. Zhang L, Singh R, Sivakumar D, Guo Z, Li J, Chen F, et al.2017. An artificial synthetic pathway for acetoin, 2,3-butanediol, and 2-butanol production from ethanol using cell free multi-enzyme catalysis. Green Chem. 20:230-242.
    CrossRef
  11. Guo Z, Zhao X, He Y, Yang T, Gao H, Li G, et al. 2017. Efficient (3R)-acetoin production from meso-2,3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2,3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin. J. Microbiol. Biotechnol. 27: 92-100.
    CrossRef
  12. Lopez-Contreras AM, Claassen PA, Mooibroek H, De Vos WM. 2000. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum A TC C 824 f or production of acetone, butanol and ethanol. Appl. Microbiol.Biotechnol. 54: 162-167.
    CrossRef
  13. Biebl H, Zeng AP, Menzel K, Deckwer WD. 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 50: 24-29.
    CrossRef
  14. Rao B, Zhang LY, Sun J, Su G, Wei D, Chu J, et al. 2012. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl. Microbiol. Biotechnol. 93:2147-2159.
    Pubmed CrossRef
  15. Celinska E, Grajek W. 2009. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol. Adv.27: 715-725.
    CrossRef
  16. Stormer FC. 1968. Evidence for induction of the 2,3-butanediolforming enzymes in Aerobacter aerogenes. FEBS Lett. 2: 36-38.
    CrossRef
  17. Gao S, Guo W, Shi L, Yu Y, Zhang C, Yang H. 2014. Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12. J. Ind. Microbiol. Biotechnol. 41: 1267-1274.
    CrossRef
  18. Van H oudt R , M oons P, Hueso Buj M, M ichiels C W. 2006. N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. J. Bacteriol. 188: 4570-4572.
    CrossRef
  19. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, et al. 1998. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 742-745.
  20. Riedel K, Ohnesorg T, Krogfelt KA, Hansen TS, Omori K, Givskov M, et al. 2001. N-acyl-L-homoserine lactonemediated regulation of the lip secretion system in Serratia liquefaciens MG1. J. Bacteriol. 183: 1805-1809.
    CrossRef
  21. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. 2004. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J. Bacteriol. 186:692-698.
    Pubmed CrossRef Pubmed Central
  22. Zhang L, Shuang C, Xie H, Tian Y, Hu K. 2012. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol. 87: 1551–1557.
    CrossRef
  23. Van H oudt R , A ertsen A , M ichiels C W. 2 007. Q uorumsensingdependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res. Microbiol. 158: 379-385.
    CrossRef
  24. Studer SV, Mandel MJ, Ruby EG. 2008. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190:5915-5923.
    Pubmed CrossRef Pubmed Central
  25. Xiao Z, Xu P. 2007. Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 33: 127-140.
    CrossRef
  26. Byers JT, Lucas C, Salmond GP, Welch M. 2002. Nonenzymatic turnover of an Erwinia carotovora quorumsensing signaling molecule. J. Bacteriol. 184: 1163-1171.
    CrossRef
  27. Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U, Straby KB, et al. 1993. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J. Bacteriol. 175: 1392-1404.
    CrossRef
  28. Kovacikova G, Lin W, Skorupski K. 2005. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetateresponsive LysR-type regulator AlsR in Vibrio cholerae. Mol.Microbiol. 57: 420-433.
    CrossRef
  29. Moons P, Van Houdt R, Vivijs B, Michiels CW, Aertsen A.2011. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl. Environ.Microbiol. 77: 3422-3427.
    CrossRef
  30. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, et al.2002. The LuxR family protein SpnR functions as a negative regulator of N-acyl homoserine lactone-dependent quorum sensing in Serratia marcescens. Mol. Microbiol. 45: 1655-1671.
    CrossRef
  31. Hao Y, Winans SC, Glick BR, Charles TC. 2010. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries. Environ. Microbiol. 12:105-117.
    Pubmed CrossRef Pubmed Central
  32. Zhang L , S un J , H ao Y , Z hu J , C hu J , W ei D , et al. 2010. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J. Ind. Microbiol. Biotechnol. 37: 857-862.
    CrossRef
  33. Zhang LY, Zhan SR, Chen LZ, Guan X, Hu KH. 2013. Screening of traditional Chinese edible fungi for quorum sensing inhibitors activity. Res. J. Biotechnol. 8: 79-83.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd