Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-2: 235~243

AuthorYan Liu, Xiaoxu Tian, Chao Peng, Zongjun Du
Place of dutyCollege of Marine Science, Shandong University, P.R. China
TitleIsolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium Flammeovirga sp. HQM9
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-2
AbstractA special eosinophilic agarase exo-type β-agarase gene, AgaDL6, was cloned from a marine agar-degrading bacterium, Flammeovirga sp. HQM9. The gene comprised 1,383-bp nucleotides encoding a putative agarase AgaDL6 of 461 amino acids with a calculated molecular mass of 52.8 kDa. Sequence analysis revealed a β-agarase domain that belongs to the glycoside hydrolase family (GH) 16 and a carbohydrate-binding module (CBM_4_9) unique to agarases. AgaDL6 was heterologously expressed in Escherichia coli BL21 (DE3). Enzyme activity analysis of the purified protein showed that the optimal temperature and pH of AgaDL6 were 50°C and 3.0, respectively. AgaDL6 showed thermal stability by retaining more than 98% of activity after incubation for 2 h at 50°C, a feature quite different from other agarases. AgaDL6 also exhibited outstanding acid stability, retaining 100% of activity after incubation for 24 h at pH 2.0 to 5.0, a property distinct from other agarases. This is the first agarase characterized to have such high acid stability. In addition, we observed no obvious stimulation or inhibition of AgaDL6 in the presence of various metal ions and denaturants. AgaDL6 is an exo-type β-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. These characteristics make AgaDL6 a potentially valuable enzyme in the cosmetic, food, and pharmaceutical industries.
Full-Text
Key_wordAgarase, GH16, CBM_4_9, eosinophilic, thermostable enzyme
References
  1. Singh A, Nigam PS, Murphy JD. 2011. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol. 102: 10-16.
    Pubmed CrossRef
  2. Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, et al. 2016. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour. Technol. 199: 311-318.
    Pubmed CrossRef
  3. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, et al. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308-313.
    Pubmed CrossRef
  4. Song T, Xu H, Wei C, Jiang T, Qin S, Zhang W, Cao Y, et al. 2016. Horizontal transfer of a novel soil agarase gene from marine bacteria to soil bacteria via human microbiota. Sci. Rep. 6: 1-10.
    CrossRef
  5. Hehemann JH, Correc G, Thomas F, Bernard T, Barbeyron T, Jam M, et al. 2012. Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. J. Biol. Chem. 287: 3057130584.
    Pubmed CrossRef Pubmed Central
  6. Dong Q, Ruan LW, Shi H. 2016. A β-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohydr. Res. 432: 1-8.
    Pubmed CrossRef
  7. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930.
    Pubmed CrossRef
  8. Zhang WB, Xu JN, Liu D Liu H, Lu XZ, Yu WG. 2018. Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Appl. Microbiol. Biotechnol. 102:2203-2212.
    Pubmed CrossRef
  9. Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. 2018. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. New Biotechnol. 40: 261-267.
    Pubmed CrossRef
  10. Jung S, Lee CR, Chi WJ, Bae CH, Hong SK. 2017. Biochemical characterization of a novel cold-adapted GH39 beta-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl. Microbiol. Biotechnol. 101:1965-1974.
    Pubmed CrossRef
  11. Araki C. 1959. Seaweed polysaccharides. pp 15–30. In:Wolfrom ML (ed) Carbohydrate chemistry of substances of biological interests. Pergamon Press, London.
  12. Lin B, Lu G, Zheng Y, Xie W, Li S, Hu Z. 2012. Gene cloning, expression and characterization of a neoagarotetraoseproducing beta-agarase from the marine bacterium Agarivorans sp. HZ105. World J. Microbiol. Biotechnol. 28: 1691-1697.
    Pubmed CrossRef
  13. van der Meulen HJ, Harder W. 1976. Characterization of the neoagarotetraase and neoagarobiase of Cytophaga flevensis. Antonie van Leeuwenhoek 42: 81-94.
    Pubmed CrossRef
  14. Morrice LM, McLean MW, Long WF, Williamson FB. 1983. β-Agarases I and II from Pseudomonas atlantica. Substrate specificities. Eur. J. Biochem. 137: 149-154.
    Pubmed CrossRef
  15. Fu W, Han B, Duan D, Liu W, Wang C. 2008. Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915-922.
    Pubmed CrossRef
  16. Liao L, Xu XW, Jiang XW, Cao Y, Yi N, Huo YY, et al. 2011. Cloning, expression, and characterization of a new betaagarase from Vibrio sp. strain CN41. Appl. Environ. Microbiol. 77: 7077-7079.
    Pubmed CrossRef Pubmed Central
  17. Dong J, Tamaru Y, Araki T. 2007. A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl. Microbiol. Biotechnol. 74: 1248-1255.
    Pubmed CrossRef
  18. Yang JI, Chen LC, Shih YY, Hsieh C, Chen CY, Chen WM, et al. 2011. Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J. Biosci. Bioeng. 112: 225-232.
    Pubmed CrossRef
  19. Long M, Yu Z, Xu X. 2010. A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar. Biotechnol. 12: 62-69.
    Pubmed CrossRef
  20. Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K. 2005. Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr. Microbiol. 50: 212-216.
    Pubmed CrossRef
  21. Tawara M, Sakatoku A, Tiodjio RE, Tanaka D, Nakamura S.2015. Cloning and characterization of a novel agarase from a newly isolated bacterium Simiduia sp. Strain TM-2 able to degrade various seaweeds. Appl. Biochem. Biotechnol. 177: 610-623.
    Pubmed CrossRef
  22. Fu X, Kim S. 2010. Agarases: review of major sources, categories, purification method, enzyme characteristics and application. Mar. Drugs. 8: 200-218.
    Pubmed CrossRef Pubmed Central
  23. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769-781.
    Pubmed CrossRef Pubmed Central
  24. Ekborg N, Taylor L, Weiner R, Hutcheson S. 2006. Genomic and proteomic analysis of the agarolytic system of Saccharophagus degradans strain 2–40. Appl. Environ. Microbiol. 72: 3396-3405.
    Pubmed CrossRef Pubmed Central
  25. Du ZJ, Zhang ZW, Miao TT. 2011. Draft Genome sequence of the novel agar-digesting marine bacterium HQM9. J. Bacteriol. 193: 4557-4558.
    Pubmed CrossRef Pubmed Central
  26. Chi WJ, Park DY, Seo YB, Chang YK, Lee SY, Hong SK. 2014. Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Appl. Microbiol. Biotechnol. 98: 4545-4555.
    Pubmed CrossRef
  27. McCarter JD, Withers SG. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4: 885-892.
    CrossRef
  28. Mai ZM, Su HF, Zhang S. 2016. Isolation and Characterization of a glycosyl hydrolase family 16 β-Agarase from a mangrove soil metagenomic library. Int. J. Mol. Sci. 17: 1-12.
    Pubmed CrossRef Pubmed Central
  29. Xu H, Fu Y, Yang N, Ding Z, Lai Q, Zeng R. 2012. Flammeovirga pacifica sp. nov., isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 62: 937-941.
    Pubmed CrossRef
  30. Zhao J, Shi B, Jiang QR, Ke CH. 2012. Changes in gutassociated flora and bacterial digestive enzymes during the development stages of abalone (Haliotis diversicolor). Aquaculture 343: 147-153.
    CrossRef
  31. Fu XT, Pan CH, Lin H, Kim SM. 2009. Gene cloning, expression, and characterization of a β-Agarase, AgaB34, from Agarivorans albus YKW-34. J. Microbiol. Biotechnol. 19: 257-264.
    Pubmed
  32. Henshaw J, Horne-Bitschy A, van Bueren AL. 2006. Family 6 carbohydrate binding modules in beta-agarases display exquisite selectivity for the non-reducing termini of agarose chains. J. Biol. Chem. 281: 17099-17107.
    Pubmed CrossRef
  33. Alkotaini B, Han NS, K im B S. 2 016. E nhanced c atalytic efficiency of endo-β-agarase I by fusion of carbohydratebinding modules for agar prehydrolysis. Enzyme Microbial. Technol. 9: 142-149.
  34. Ohta Y, Hatada Y, Nogi Y. 2 004. E nzymatic p roperties and nucleotide and amino acid sequences of a thermostable βagarase from a novel species of deep-sea microbulbifer. Appl. Microbiol. Biotechnol. 64: 505-514.
    Pubmed CrossRef
  35. Hu Z, Lin BK, Xu Y, Zhong MQ, Liu GM. 2008. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106: 181-190.
    Pubmed CrossRef
  36. Vera J, Alvarez R, Murano E, Slebe JC, Leon O. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4383.
    Pubmed Pubmed Central
  37. Wang JX, Mou HJ, Jiang XL, Guan HS. 2006. Characterization of a novel β-agarase from marine Alteromonas sp. SY37–12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839.
    Pubmed CrossRef
  38. Fu XT, Lin H, Kim SM. 2008. Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol. 78: 265-273.
    Pubmed CrossRef
  39. Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, et al. 2017. Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type βagarase, Aga16B. Appl. Microbiol. Biotechnol. 101: 1111-1120.
    Pubmed CrossRef
  40. Kim HT, Lee S, Kim KH, Choi IG. 2012. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 107: 301-306.
    Pubmed CrossRef
  41. Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-l-galactose from agarose its purification and in vitro skin-whitening anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97: 2961-2970.
    Pubmed CrossRef
  42. Kim SW, Hong CH, Jeon SW, Shin HJ. 2015. High-yield production of reducing sugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour. Technol. 196: 634-641.
    Pubmed CrossRef
  43. Rios G, Ferrando A, Serrano R. 1997. Mechanisms of salt tolerance conferred by overexpression of the HAL1 Gene in Saccharomyces cerevisiae. Yeast 13: 515-528.
    CrossRef
  44. Liu N, Mao X, Du Z, Mu B, Wei D. 2014. Cloning and characterization of a novel neoagarotetraose forming betaagarase, AgWH50A from Agarivorans gilvus WH0801. Carbohydr. Res. 388: 147-151.
    Pubmed CrossRef
  45. Li J, Hu Q, Li Y, Xu Y. 2015. Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain. Braz . J. Microbiol. 46: 683-690.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd