Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-1: 30~36

AuthorI Na Yoon, Jae Sam Hwang, Joon Ha Lee, Ho Kim
Place of dutyDepartment of Life Science, College of Natural Science, Daejin University,Pocheon, Gyeonggido, South Korea, 487-711
TitleThe Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-1
AbstractNumerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 MAPK/p27kip1, suggesting that CopA3 inhibits toxin Ainduced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.
Full-Text
Key_wordBacterial toxin, gut inflammation, enteric nerve system, insect-derived antimicrobial peptide, apoptosis
References
  1. Camilleri M, Nullens S, Nelsen T. 2012. Enteroendocrine and neuronal mechanisms in pathophysiology of acute infectious diarrhea. Dig. Dis. Sci. 57: 19-27.
    Pubmed CrossRef Pubmed Central
  2. Castagliuolo I, LaMont JT, Letourneau R, Kelly C, O’Keane JC, Jaffer A, et al. 1994. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 107: 657-665.
    CrossRef
  3. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135:1984-1992.
    Pubmed CrossRef
  4. Choi H, Hwang JS, Kim H, Lee DG. 2013. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3. Biochem. Biophys. Res. Commun. 440: 94-98.
    Pubmed CrossRef
  5. Chowanski S, Adamski Z, Lubawy J, Marciniak P, Pacholska-Bogalska J, Slocinska M, et al. 2017. Insect peptides - perspectives in human diseases treatment. Curr. Med. Chem. 24: 3116-3152.
    Pubmed CrossRef
  6. Dillon ST, Rubin EJ, Yakubovich M, Pothoulakis C, LaMont JT, Feig LA, et al. 1995. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Infect. Immun. 63: 1421-1426.
    Pubmed Pubmed Central
  7. Goyal RK, Hirano I. 1996. The enteric nervous system. N. Engl. J. Med. Overseas Ed. 334: 1106-1115.
    Pubmed
  8. Harwig SS, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA, et al. 1994. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342: 281-285.
    CrossRef
  9. He D, Hagen SJ, Pothoulakis C, Chen M, Medina ND, Warny M, et al. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119: 139-150.
    Pubmed CrossRef
  10. Hong J, Z hang P , Yoon I N, H wang J S , Kang J K, K im H . 2017. The American cockroach peptide periplanetasin-2 blocks Clostridium Difficile toxin A-induced cell damage and inflammation in the gut. J. Microbiol. Biotechnol. 27: 694-700.
    Pubmed CrossRef
  11. Hwang J S , Lee J, K im Y J, B ang HS , Yun EY, Kim SR, et al. 2009. Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, copris tripartitus. Int. J. Pept. 2009
    CrossRef
  12. Just I, Wilm M, Selzer J, Rex G, von Eichel-Streiber C, Mann M, et al. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 1393213936.
    CrossRef
  13. Just I, Selzer J, Hofmann F, Green GA, Aktories K. 1996. Inactivation of Ras by Clostridium sordellii lethal toxincatalyzed glucosylation. J. Biol. Chem. 271: 10149-10153.
    Pubmed CrossRef
  14. Kelly CP, Pothoulakis C, LaMont JT. 1994. Clostridium difficile colitis. N. Engl. J. Med. 330: 257-262.
    Pubmed CrossRef
  15. Kim BY, Lee KS, Choo YM, Kim I, Hwang JS, Sohn HD, Jin BR. 2008. Molecular cloning and characterization of a transferrin cDNA from the white-spotted flower chafer, Protaetia brevitarsis. DNA Seq. 19: 146-150.
    Pubmed CrossRef
  16. Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, et al. 2014. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem. Biophys. Res. Commun. 448: 292-297.
    Pubmed CrossRef
  17. Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2016. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223.
    Pubmed CrossRef Pubmed Central
  18. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, et al. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888.
    Pubmed CrossRef
  19. Kim H, Rhee SH, Kokkotou E, Na X, Savidge T, Moyer MP, et al. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245.
    Pubmed CrossRef
  20. Kim H, Rhee SH, Pothoulakis C, Lamont JT. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886.
    Pubmed CrossRef
  21. Kim IW, Lee JH, Park HY, Kwon YN, Yun EY, Nam SH, et al. 2012. Characterization and cDNA cloning of a defensin-like peptide, harmoniasin, from Harmonia axyridis. J. Microbiol. Biotechnol. 22: 1588-1590.
    Pubmed CrossRef
  22. Leite ML, da Cunha NB, Costa FF. 2018. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol. Ther. 183: 160176.
    Pubmed CrossRef
  23. Na X, Zhao D, Koon HW, Kim H, Husmark J, Moyer MP, et al. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128: 1002-1011.
    Pubmed CrossRef
  24. Nam HJ, Oh AR, Nam ST, Kang JK, Chang JS, Kim DH, et al. 2012. The insect peptide CopA3 inhibits lipopolysaccharideinduced macrophage activation. J. Pept. Sci.18: 650-656.
    Pubmed CrossRef
  25. Nam S T, K im D H, L ee M B, N am H J, K ang JK, Park M J, et al. 2013. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem. Biophys. Res. Commun. 437: 35-40.
    Pubmed CrossRef
  26. Poli E, Lazzaretti M, Grandi D, Pozzoli C, Coruzzi G. 2001. Morphological and functional alterations of the myenteric plexus in rats with TNBS-induced colitis. Neurochem. Res. 26:1085-1093.
    Pubmed CrossRef
  27. Pothoulakis C, Lamont JT. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178183.
    Pubmed CrossRef
  28. Reinshagen M, Rohm H, Steinkamp M, Lieb K, Geerling I, Von Herbay A, et al. 2000. Protective role of neurotrophins in experimental inflammation of the rat gut. Gastroenterology 119: 368-376.
    Pubmed CrossRef
  29. Ren X, Kasir J, Rahamimoff H. 2001. The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents. J. Biol. Chem. 276:9572-9579.
    Pubmed CrossRef
  30. Rhee SH, Im E, Riegler M, Kokkotou E, O'Brien M, Pothoulakis C. 2005. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl. Acad. Sci. USA 102: 13610-13615.
    Pubmed CrossRef Pubmed Central
  31. Roudi R, Syn NL, Roudbary M. 2017. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol. 8: 1320.
    Pubmed CrossRef Pubmed Central
  32. Shin S, Kim JK, Lee JY, Jung KW, Hwang JS, Lee J, et al. 2009. Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J. Pept. Sci. 15: 559-568.
    Pubmed CrossRef
  33. Xia Y, Hu HZ, Liu S, Pothoulakis C, Wood JD. 2000. Clostridium difficile toxin A excites enteric neurones and suppresses sympathetic neurotransmission in the guinea pig. Gut 46: 481-486.
    Pubmed CrossRef Pubmed Central
  34. Yu S J, Grider JR, Gulick MA, X ia CM, S hen S , Qiao L Y. 2012. Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis. Exp. Neurol. 238: 209-217.
    Pubmed CrossRef Pubmed Central
  35. Zhang P, Hong J, Yoon IN, Kang JK, Hwang JS, Kim H. 2017. Clostridium difficile toxin A induces reactive oxygen species production and p38 MAPK activation to exert cellular toxicity in neuronal cells. J. Microbiol. Biotechnol. 27:1163-1170.
    Pubmed



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd