Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-3: 410~418

AuthorRu Zhang, Xue-Mei Huang, Hui-Juan Yan, Xin-Yi Liu, Qi Zhou, Zhi-Yong Luo, Xiao-Ning Tan, Bian-Ling Zhang
Place of dutyCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China,Hunan Provincial Key Laboratory of EnvironmentaI Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
TitleHighly Selective Production of Compound K from Ginsenoside Rd by Hydrolyzing Glucose at C-3 Glycoside Using β-Glucosidase of Bifidobacterium breve ATCC 15700
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-3
AbstractTo investigate a novel β-glucosidase from Bifidobacterium breve ATCC 15700 (BbBgl) to produce compound K (CK) via ginsenoside F2 by highly selective and efficient hydrolysis of the C-3 glycoside from ginsenoside Rd, the BbBgl gene was cloned and expressed in E. coli BL21. The recombinant BbBgl was purified by Ni-NTA magnetic beads to obtain an enzyme with specific activity of 37 U/mg protein using pNP-Glc as substrate. The enzyme activity was optimized at pH 5.0, 35°C, 2 or 6 U/ml, and its activity was enhanced by Mn2+ significantly. Under the optimal conditions, the half-life of the BbBgl is 180 h, much longer than the characterized β-glycosidases, and the Km and Vmax values are 2.7 mM and 39.8 μmol/mg/min for ginsenoside Rd. Moreover, the enzyme exhibits strong tolerance against high substrate concentration (up to 40 g/l ginsenoside Rd) with a molar biotransformation rate of 96% within 12 h. The good enzymatic properties and gram-scale conversion capacity of BbBgl provide an attractive method for large-scale production of rare ginsenoside CK using a single enzyme or a combination of enzymes
Full-Text
Supplemental Data
Key_wordBifidobacterium breve, biotransformation, compound K, ginsenoside Rd, β-Glucosidase
References
  1. Ji QC, Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. 2001. Quantitative determination of ginsenosides by high-performance liquid chromatography-tandem mass spectrometry. Phytochem. Anal. 12: 320-326.
    Pubmed CrossRef
  2. Park JH. 2004. Sun ginseng – a new processed ginseng with fortified activity. Food Ind. Nutr. 9: 23-27.
  3. Sunwoo HH, Kim CT, Kim DY, Maeng JS, Cho CW, Lee SJ. 2013. Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C. A. Meyer) using commercial enzymes and high hydrostatic pressure. Biotechnol. Lett. 35: 1017-1022.
    Pubmed CrossRef
  4. Johanssen K. 2006. Ginseng dreams: the secret world of America’s most valuable plant. The Univ Press of Kentucky,USA.
    Pubmed
  5. Mathur A, Gangwar A, Mathur AK, Verma P, Uniyal GC, Lal RK. 2010. Growth kinetics and ginsenosides production in transformed hairy roots of American ginseng--Panax quinquefolium L. Biotechnol. Lett. 32: 457-461.
    Pubmed CrossRef
  6. Kochan E, Wasiela M, Sienkiewicz M. 2013. The production of ginsenosides in hairy root cultures of American Ginseng, L. and their antimicrobial activity. In Vitro Cell Dev. Biol. Plant. 49: 24-29.
    Pubmed CrossRef Pubmed Central
  7. Kim H, Kim JH, Lee PY, Bae KH, Cho S, Park BC, et al. 2013. Ginsenoside Rb1 is transformed into Rd and Rh2 by Microbacterium trichothecenolyticum. J. Microbiol. Biotechnol. 23: 1802-1805.
    Pubmed CrossRef
  8. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215.
    Pubmed CrossRef
  9. Xu QF, Fang XL, Chen DF. 2003. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 84: 187-192.
    CrossRef
  10. Akao T, Kanaoka M, Kobashi K. 1998. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245-249.
    Pubmed CrossRef
  11. Hasegawa H. 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95: 153-157.
    Pubmed CrossRef
  12. Yang XD, Yang YY, Ouyang DS, Yang GP. 2015. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100: 208-220.
    Pubmed CrossRef
  13. Wong AS, Che CM, Leung KW. 2015. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat. Prod. Rep. 32: 256-272.
    Pubmed CrossRef
  14. Park CS, Yoo MH, Noh KH, Oh DK. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19.
    Pubmed CrossRef
  15. Park SE, Na CS, Yoo SA, Seo SH, Son HS. 2017. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 41: 36-42.
    Pubmed CrossRef Pubmed Central
  16. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y.1991. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VI. The decomposition products of ginsenoside Rb2 in the stomach of rats. Chem. Pharm. Bull. (Tokyo) 39: 400-404.
    CrossRef
  17. Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, et al. 2016. Characterization of a novel arabinose-tolerant alpha-Larabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. J. Appl. Microbiol. 120: 647-660.
    Pubmed CrossRef
  18. Lee NK, Paik HD. 2017. Bioconversion using lactic acid bacteria: ginsenosides, GABA, and phenolic compounds. J. Microbiol. Biotechnol. 27: 869-877.
    Pubmed CrossRef
  19. Kim MJ, Upadhyaya J, Yoon MS, Ryu NS, Song YE, Park HW, et al. 2018. Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by beta-glycosidase purified from Armillaria mellea mycelia. J. Ginseng Res. 42: 504-511.
    Pubmed CrossRef Pubmed Central
  20. Upadhyaya J, Kim MJ, Kim YH, Ko SR, Park HW, Kim MK. 2016. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J. Ginseng Res. 40: 105-112.
    Pubmed CrossRef Pubmed Central
  21. Yoo MH, Yeom SJ, Park CS, Lee KW, Oh DK. 2011. Production of aglycon protopanaxadiol via compound K by a thermostable beta-glycosidase from Pyrococcus furiosus. Appl. Microbiol. Biotechnol. 89: 1019-1028.
    Pubmed CrossRef
  22. Zhang R, Zhang BL, Xie T, Li GC, Tuo Y, Xiang YT. 2015. Biotransformation of rutin to isoquercitrin using recombinant alpha-L-rhamnosidase from Bifidobacterium breve. Biotechnol. Lett. 37: 1257-1264.
    Pubmed CrossRef
  23. Shin KC, Lee HJ, Oh DK. 2015. Substrate specificity of betaglucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg(3), Rg(2), and Rh(1) from ginseng root extract. J. Biosci. Bioeng. 119:497-504.
    Pubmed CrossRef
  24. Zhao L, Xie J, Zhang X, Cao F, Pei J. 2013. Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. J. Mol. Catal. B: Enzym.95: 62-69.
    CrossRef
  25. Shin HY, Lee JH, Lee JY, Han YO, Han MJ, Kim DH. 2003. Purification and characterization of ginsenoside Rahydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol. Pharm.Bull. 26: 1170-1173.
    Pubmed CrossRef
  26. Shin HY, Park SY, Sung JH, Kim DH. 2003. Purification and characterization of alpha-L-arabinopyranosidase and alphaL-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol. 69: 7116-7123.
    Pubmed CrossRef Pubmed Central
  27. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. 2008. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces bainier. J. Microbiol. Biotechnol. 18: 1081-1089.
    Pubmed
  28. Noh KH, Oh DK. 2009. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius. Biol. Pharm. Bull. 32: 1830-1835.
    Pubmed CrossRef
  29. Bhatti HN, Batool S, Afzal N. 2013. Production and characterization of a novel β-Glucosidase from Fusarium solani. Int. J. Agric. Biol. 15, 140–144.
  30. Leite RSR, Gomes E, da Silva R. 2007. Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem. 42: 1101-1106.
    CrossRef
  31. Sun J, Wang W, Yao C, Dai F, Zhu X, Liu J, et al. 2018. Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 beta-glucosidase from the marine bacterium Alteromonas sp. L82. J. Microbiol. 56: 656-664.
    Pubmed CrossRef
  32. Chen G, Yang M, Song Y, Lu Z, Zhang J, Huang H, et al. 2008. Comparative analysis on microbial and rat metabolism of ginsenoside Rb1 by high-performance liquid chromatography coupled with tandem mass spectrometry. Biomed. Chromatogr.22: 779-785.
    Pubmed CrossRef
  33. Quan LH, Min JW, Jin Y, Wang C, Kim YJ, Yang DC. 2012. Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant beta-glucosidase from Microbacterium esteraromaticum. J. Agric. Food Chem. 60: 3776-3781.
    Pubmed CrossRef
  34. Choi JH, Shin KC, Oh DK. 2018. An L213A variant of betaglycosidase from Sulfolobus solfataricus with increased alphaL-arabinofuranosidase activity converts ginsenoside Rc to compound K. PLoS One 13: e0191018.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd