Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-1: 79~90

AuthorShamsun Nahar, Min-Hye Jeong, Jae-Seoun Hur
Place of dutyDepartment of Environmental Education and Science, Sunchon National University, Suncheon, Republic of Korea,Department of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
TitleLichen-Associated Bacterium, a Novel Bioresource of Polyhydroxyalkanoate (PHA) Production and Simultaneous Degradation of Naphthalene and Anthracene
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-1
AbstractLichens are generally known as self-sufficient, symbiotic life-forms between fungi and algae/ cyanobacteria, and they also provide shelter for a wide range of beneficial bacteria. Currently, bacterial-derived biodegradable polyhydroxyalkanoate (PHA) is grabbing the attention of many researchers as a promising alternative to non-degradable plastics. This study was conducted to develop a new method of PHA production using unexplored lichen-associated bacteria, which can simultaneously degrade two ubiquitous industrial toxins, anthracene and naphthalene. Here, 49 lichen-associated bacteria were isolated and tested for PHA synthesis. During the GC-MS analysis, a potential strain of EL19 was found to be a 3-hydroxyhexanoate (3-HHx) accumulator and identified as Pseudomonas sp. based on the 16S rRNA sequencing. GC analysis revealed that EL19 was capable of accumulating 30.62% and 19.63% of 3-HHx from naphthalene and anthracene, respectively, resulting in significant degradation of 98% and 96% of naphthalene and anthracene, respectively, within seven days. Moreover, the highly expressed phaC gene verified the genetic basis of PHAmcl production under nitrogen starvation conditions. Thus, this study strongly supports the hypothesis that lichen-associated bacteria can detoxify naphthalene and anthracene, store energy for extreme conditions, and probably help the associated lichen to live in extreme conditions. So far, this is the first investigation of lichen-associated bacteria that might utilize harmful toxins as feasible supplements and convert anthracene and naphthalene into eco-friendly 3-HHx. Implementation of the developed method would reduce the production cost of PHAmcl while removing harmful waste products from the environment.
Full-Text
Supplemental Data
Key_wordBiodegradation, biopolymers, bioproducts, hazardous waste, Pseudomonas
References
  1. Grube M, Cardinale M, Jr de Castro JV, Müller H, Berg G. 2009. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 3: 11051115.
    Pubmed CrossRef
  2. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77: 1309-1314.
    Pubmed CrossRef Pubmed Central
  3. Iskina RY. 1938. On nitrogen fixing bacteria in lichens. Isv. Biol. Inst. Permsk. 11: 133-139.
  4. Panosyan AK, Nikogosyan VG. 1966. The presence of Azotobacter in lichens. Akad. Nauk. Armian. SSR Biol. Zhurn. Armen. 19: 3-11.
  5. Henkel PA, Plotnikova TT. 1973. Nitrogen-fixing bacteria in lichens. Izv. Akad. Nauk SSR Ser. Biol. 1973: 807-813.
  6. González I, Ayuso-Sacido A, Anderson A, Genilloud O. 2005. Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54: 401-415.
    Pubmed CrossRef
  7. Aschenbrenner IA, Cernava T, Berg G, Grube M. 2016. Understanding microbial multi-species symbioses. Front. Microbiol. 7: 180.
    Pubmed CrossRef Pubmed Central
  8. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, et al. 2015. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9: 412-424.
    Pubmed CrossRef Pubmed Central
  9. Nampoothiri KM, Nair NR, John RP. 2010. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101: 8493-8501.
    Pubmed CrossRef
  10. Chen G-Q. 2010. Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates, pp. 17-37. In Chen G-Q (ed.), Plastics from Bacteria: Natural functions and Applications, vol. 14. Microbiology Monographs, Springer Berlin Heidelberg, Germany.
    CrossRef
  11. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. 2007. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnol. Adv. 25: 148-175.
    Pubmed CrossRef
  12. Doi Y, Kitamura S, Abe H. 1995. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28: 4822-4828.
    CrossRef
  13. Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gaillard J-L, et al. 2013. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: Evidence of an atypical metabolism in Bacillus megaterium DSM 509. J. Biosci. Bioeng. 116: 302-308.
    Pubmed CrossRef
  14. Verlinden R, Hill D, Kenward M, Williams C, Radecka I. 2007 Bacterial synthesis of biodegradable polyhydroxylalkanoates. J. Appl. Microbiol. 102: 1437-1449.
    Pubmed CrossRef
  15. Gao X, Yuan XX, Shi ZY, Guo YY, Shen XW, Chen JC, et al. 2012. Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene. Microb. Cell Fact. 11: 130.
    Pubmed CrossRef Pubmed Central
  16. Matias F, Brandt CA, da Silva ES, de Andrade Rodrigues MF. 2017. Polyhydroxybutyrate and polyhydroxydodecanoate produced by Burkholderia contaminans IPT 553. J. Appl. Microbiol. 123: 124-133.
    Pubmed CrossRef
  17. Mohan SV, Reddy MV. 2013. Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology. Bioresour. Technol. 128: 409-416.
    Pubmed CrossRef
  18. Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O’Connor KE. 2008. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 80: 665673.
    Pubmed CrossRef
  19. Narancic T, Kenny ST, Djokic L, Vasiljevic B, O’Connor KE, Nikodinovic-Runic J. 2012. Medium-chain-length polyhydroxyalkanoate production by newly isolated Pseudomonas sp. TN301 from a wide range of polyaromatic and monoaromatic hydrocarbons. J. Appl. Microbiol. 113: 508-520.
    Pubmed CrossRef
  20. Povolo S, Basaglia M, Fontana F, Morelli A, Casella S. 2015. Poly(hydroxyalkanoate) production by Cupriavidus necator from fatty waste can be enhanced by phaZ1 inactivation. Chem. Biochem. Eng. Q 29: 67-74.
    CrossRef
  21. Filonov AE, Puntus IF, Karpov AV, Kosheleva IA, Kashparov KI, Slepenkin AV, et al. 2004. Efficiency of naphthalene biodegradation by Pseudomonas putida G7 in soil. J. Chem. Technol. Biotechnol. 79: 562-569.
    CrossRef
  22. Reddy MV, Mawatari Y, Yajima Y, Seki C, Hoshino T, Chang Y-C. 2015. Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: a new strategy for wealth from waste. Bioresour. Technol. 192: 711-717.
    Pubmed CrossRef
  23. Cernava T, Müller H, Aschenbrenner IA, Grube M, Berg G. 2015a. Analysing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Front. Microbiol. 6: 620.
    Pubmed CrossRef Pubmed Central
  24. Lee YM, Kim EH, Lee HK, Hong SG. 2014. Biodiversity and physiological characteristics of Antarctic and Arctic lichensassociated bacteria. World J. Microbiol. Biotechnol. 30: 27112721.
    Pubmed CrossRef
  25. Cernava, T. 2015. Exploring the Substantial Contributions and the Global Interactions of the Microbiome in an Ancient Symbiosis. Doctoral thesis, Graz University of Technology, Graz. 15-16.
  26. Eymann C, Lassek C, Wegner U, Bernhardt J, Fritsch OA, Fuchs S, et al. 2017. Symbiotic interplay of fungi, algae, and bacteria within the lung lichen Lobaria pulmonaria L. Hoffm. as assessed by state-of-the-art metaproteomics. J. Proteome Res. 16: 2160-2173.
    Pubmed CrossRef
  27. Castro-Sowinski S, Burdman S, Matan O, Okon Y. 2010. Natural functions of bacterial polyhydroxyalkanoates, pp. 39-61. In Chen G-Q (ed.), Plastics from Bacteria: Natural functions and Applications, Microbiology Monographs, Springer, Berlin, Heidelberg.
    CrossRef
  28. Pham TH, Webb JS, Rehm BH. 2004. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150: 3405-3413.
    Pubmed CrossRef
  29. Goh YS, Tan IKP. 2012. Polyhydroxyalkanoate production by Antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol. Res. 167: 211-219.
    Pubmed CrossRef
  30. Wang Q, Nomura CT. 2010. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J. Biosci. Bioeng. 110: 653-659.
    Pubmed CrossRef
  31. Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, et al. 2014. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb. Cell Fact. 13: 88.
    Pubmed CrossRef Pubmed Central
  32. Ostle AG, Holt JG. 1 987. N ile b lue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238241.
  33. Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan Z, Keller J. 2005. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J. Chromatogr. A 1070: 131-136.
    Pubmed CrossRef
  34. Dib MA, Bendahou M, Bandiabdellah A, Djabou N, Allali A, Tabti B, et al. 2010. Partial chemical composition and antimicrobial activity of Daucus crinitus Desf. extracts. Grasas Y Aceites 61: 271-278.
    CrossRef
  35. Lin W, Wang Y, Gorby Y, Nealson K, Pan Y. 2013. Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci. Rep. 3: 1643.
    Pubmed CrossRef Pubmed Central
  36. Kim O S, C ho Y J, L ee K, Y oon S H, K im M , N a H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721.
    Pubmed CrossRef
  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids Res. 25: 4876-4882.
    Pubmed CrossRef Pubmed Central
  38. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
    Pubmed
  39. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
    Pubmed CrossRef
  40. Solaiman DKY, Ashby RD, Foglia TA. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694.
    Pubmed CrossRef
  41. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408.
    Pubmed CrossRef
  42. Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S. 2011. Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann. Microbiol. 61: 623.
    CrossRef
  43. Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S. 2010. Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol. 33: 71-83.
    CrossRef
  44. Cernava T, Aschenbrenner IA, Grube M, Liebminger S, Berg G. 2015. A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Front. Microbiol. 6: 398.
    Pubmed CrossRef Pubmed Central
  45. Honegger R, Edwards D, Axe L. 2013. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol. 197: 264-275.
    Pubmed CrossRef
  46. Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH. 1992. Effect of nitrogen limitation on long-side-chain polybetahydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl. Environ. Microbiol. 58: 744-746.
    Pubmed Pubmed Central
  47. Hoffmann N, Rehm BHA. 2005. Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol. Lett. 27:279-282.
    Pubmed CrossRef
  48. Thakor N S, P atel MA, T rivedi U B, P atel KC. 2 003. Production of poly(β-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene. World J. Microbiol. Biotechnol. 19: 185-189.
    CrossRef
  49. Leneva NA, Kolomytseva MP, Baskunov BP, Golovleva LA. 2010. Enzymes of Naphthalene Metabolism by Pseudomonas fluorescens 26K Strain. Biochemistry (Moscow) 75: 562-570.
    CrossRef
  50. Panda B, Jain P, Sharma L, Mallick N. 2006. Optimization of cultural and nutritional conditions for accumulation of polyβ-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour. Technol. 97: 1296-1301.
    Pubmed CrossRef
  51. Ward PG, Goff M, Donner M, Kaminsky W, O’Connor K. 2006. A two step chemo-biotechnological conversion of polystyrene to a biodegradable plastic. Environ. Sci. Technol. 40: 2433-2437.
    Pubmed CrossRef
  52. Tan GYA, Chen CL, Ge L, Li L, Tan SN, Wang JY. 2015. Bioconversion of styrene to poly(hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12. Microbes Environ. 30: 76-85.
    Pubmed CrossRef Pubmed Central
  53. Chung AL, Jin HL, Huang LJ, Ye HM, Chen JC, Wu Q, et al. 2011. Biosynthesis and characterization of poly (3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12: 3559-3566.
    Pubmed CrossRef
  54. Elbahloul Y, Steinbüchel A. 2009. Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl. Environ. Microbiol. 75: 643-651.
    Pubmed CrossRef Pubmed Central
  55. Gao J, Ramsay JA, Ramsay BA. 2016. Fed-batch production of poly-3- hydroxydecanoate from decanoic acid. J. Biotechnol. 218: 102-107.
    Pubmed CrossRef
  56. Reddy MV, Yajima Y, Mawatari Y, Hoshino T, Chang YC. 2015b. Degradation and conversion of toxic compounds into useful bioplastics by Cupriavidus sp. CY-1: relative expression of the PhaC gene under phenol and nitrogen stress. Green Chem. 17: 4560-4569.
    CrossRef
  57. Follonier S, Henes B, Panke S, Zinn M. 2012. Putting cells under pressure: a simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol. Bioeng. 109: 451-461.
    Pubmed CrossRef
  58. Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q. 2012. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol. 12: 53.
    Pubmed CrossRef Pubmed Central
  59. Kaur G, Roy I. 2015. Strategies for large-scale production of polyhydroxyalkanoates. Chem. Biochem. Eng. Q. 29: 157-172.
    CrossRef
  60. Oksanen I. 2006. Ecological and biotechnological aspects of lichens. Appl. Microbiol. Biotechnol. 73: 723-734.
    Pubmed CrossRef
  61. Hoffmann N, Steinbuchel A, Rehm BHA. 2000. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylasemediated polyhydroxyalkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54: 665-670.
    Pubmed CrossRef
  62. Popp N, Schlömann M, Mau M. 2006. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152: 3291-3304.
    Pubmed CrossRef
  63. Kenny ST, Nikodinovic-Runic J, Kaminsky W, Woods T, Babu RP, Keely CM, et al. 2008. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 42: 76967701.
    CrossRef
  64. Feijoo-Siota L, Rosa-Dos-Santos F, de Miguel T, Villa TG. 2008. Biodegradation of naphthalene by Pseudomonas stutzeri in marine environments: Testing cells entrapment in calcium alginate for use in water detoxification. Bioremediat. J. 12:185-192.
    CrossRef
  65. Karimi B, Habibi M, Esvand M. 2015. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic–aerobic continuous flow combined bioreactor. J. Environ. Health. Sci. Eng. 13: 26.
    Pubmed CrossRef Pubmed Central
  66. Jacques RJS, Santos EC, Bento FM, Peralba MCR, Selbach PA, Sá ELS, et al. 2005. Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge land farming site. Int. Biodeter. Biodegr. 56: 143-150.
    CrossRef
  67. Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 5: 21912198.
  68. Ciesielski S, Cydzik-Kwiatkowska A, Pokoj T, Klimiuk E. 2006. Molecular detection and diversity of medium-chainlength polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199.
    Pubmed CrossRef
  69. McCool GJ, Cannon MC. 2001. PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J. Bacteriol.183: 4235-4243.
    Pubmed CrossRef Pubmed Central
  70. Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI. 2014. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PLoS One 9: e98873.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd