Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-2: 283~291

AuthorPuleip Lee, Yuhoon Hwang, Taejin Lee
Place of dutySeoul National University of Science & Technology,Republic of Korea
TitleFermentative Bio-Hydrogen Production of Food Waste in the Presence of Different Concentrations of Salt (Na+) and Nitrogen
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-2
AbstractFermentation of food waste in the presence of different concentrations of salt (Na+) and ammonia was conducted to investigate the interrelation of Na+ and ammonia content in biohydrogen production. Analysis of the experimental results showed that peak hydrogen production differed according to the ammonia and Na+ concentration. The peak hydrogen production levels achieved were (97.60, 91.94, and 49.31) ml/g COD at (291.41, 768.75, and 1,037.89) mg-N/L of ammonia and (600, 1,000, and 4,000) mg-Na+/L of salt concentration, respectively. At peak hydrogen production, the ammonia concentration increased along with increasing salt concentration in the medium. This means that for peak hydrogen production, the C/N ratio decreased with increasing salt content in the medium. The butyrate/acetate (B/A) ratio was higher in proportion to the bio-hydrogen production (r-square: 0.71, p-value: 0.0006). Different concentrations of Na+ and ammonia in the medium also produced diverse microbial communities. Klebsiella sp., Enterobacter sp., and Clostridium sp. were predominant with high bio-hydrogen production, while Lactococcus sp. was found with low bio-hydrogen production.
Full-Text
Key_wordAmmonia, salt, bio-hydrogen, dark fermentation
References
  1. Khanal SK, Chen WH, Chen LL, Sung S. 2004. Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29: 1123-1131.
  2. Huang M, Ouyang L, Wang H, Liu J , Zhu M . 2015. Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing. Int. J. Hydrogen Energy 40: 6145-6150.
    CrossRef
  3. Chen W, Ouyang LZ, Liu JW, Yao XD, Wang H, Liu ZW, et al. 2017. Hydrolysis and regeneration of sodium borohydride (NaBH4) - a combination of hydrogen production and storage. J. Power Sources 359: 400-407.
    CrossRef
  4. Ma M , Duan R, Ouyang L, Zhu X , Peng C, Z hu M. 2017. Hydrogen generation via hydrolysis of H-CaMg2 and HCaMg1.9Ni0. Int. J. Hydrogen Energy 42: 22312-22317.
    CrossRef
  5. Kapdan IK, Kargi F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582.
    CrossRef
  6. Adamson KA. 2004. Hydrogen from renewable resourcesthe hundred year commitment. Energ. Policy 32: 1231-1242.
    CrossRef
  7. Kotay SM, Das D. 2008. Biohydrogen as a renewable energy resource-prospects and potentials. Int. J. Hydrogen Energy 33:258-263.
    CrossRef
  8. Nath K, Das D. 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbial. Biotechnol. 65: 520-529.
    Pubmed CrossRef
  9. Das D, Veziro lu TN. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26: 13-28.
    CrossRef
  10. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32: 172-184.
    CrossRef
  11. Oh YK, Seol EH, Lee EY, Park SH. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27:1373-1379.
    CrossRef
  12. Liu X, Zhu Y, Yang ST. 2006. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb. Technol. 38: 521-528.
    CrossRef
  13. Campoy RA, Guelfo LAF, Fallego CJA, Garcia LIR. 2017. Inhibition of the hydrolytic phase in the production of biohydrogen by dark fermentation of organic solid waste. Energy Fuels 31: 7176-7184
    CrossRef
  14. Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T, Xu KQ, et al. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int. J. Hydrogen Energy 41: 3820-3836.
    CrossRef
  15. Xiaolong H, Minghua Z, Hanqing Y, Qinqin S, Lecheng L. 2006. Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge. Chinese J. Chem. Eng. 14: 511-517.
    CrossRef
  16. Sprott GD, Shaw KM, Jarrell KF. 1984. Ammonia/potassium exchange in methanogenic bacteria. J. Biol. Chem. 259: 1260212608.
  17. Lee M J, Kim TH, Min B K, Hwang S J. 2 012. S odium (Na+) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis. J. Environ. Manage 108: 22-26.
    Pubmed CrossRef
  18. Jin B, Wang S, Xing L, Li B, Peng Y. 2016. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis. J. Environ. Sci. 43: 80-90.
    Pubmed CrossRef
  19. Kim DH, Kim SH, Shin HS. 2009. Sodium inhibition of fermentative hydrogen production. Int. J. Hydrogen Energy 34: 3295-3304.
    CrossRef
  20. Salerno MB, Park WS, Zuo Y, Logan BE. 2006. Inhibition of biohydrogen production by ammonia. Water Res. 40: 1167-1172.
    Pubmed CrossRef
  21. Wang B, Wan W, Wang J. 2009. Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour. Technol. 100: 1211-1213.
    Pubmed CrossRef
  22. Kumar P , Sharma R, Ray S , Mehariya S, Patel SKS, Lee JK, et al. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182:383-388
    Pubmed CrossRef
  23. Kadam PC, Boone D R. 1 996. I nfluence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Appl. Environ. Microbiol. 62: 4486-4492.
    Pubmed Pubmed Central
  24. Wu JH, Lin CY. 2004. Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci. Technol. 49: 223-228.
    Pubmed CrossRef
  25. Lin CY, Lay CH. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 29: 41-45.
    CrossRef
  26. Kang JH, Kim D, Lee TJ. 2012. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment. Bioresour. Technol. 109: 239-243.
    Pubmed CrossRef
  27. Jun YS, Yu SH, Ryu KG, Lee TJ. 2008. Kinetic study of pH effects on biological hydrogen production by a mixed culture. J. Microbiol. Biotechnol. 18: 1130-1135.
    Pubmed
  28. Arnold EG, Lenore SC, Andrew DE. 1992. pp. 56-59. American Public Health Association. Standard methods for the examination of water and wastewater, 18th Ed. American Public Health Assoc. Washington, DC, USA.
  29. Michel DB, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
    CrossRef
  30. Markwell MAK, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210.
    CrossRef
  31. Muyzer G, Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
    Pubmed Pubmed Central
  32. Pedro M S, Haruta S, Hazaka M, Shimada R , Yoshida C , Hiura K, et al. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J. Biosci. Bioeng. 91: 159-165.
    CrossRef
  33. Baek JS, Choi EH, Yun Y S, Kim SC, K im M S. 2 006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215.
  34. Cao X, Zhao Y. 2009. The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J. Mater. Cycles Waste Manage. 11: 244-250.
    CrossRef
  35. Thakur V, Jadhav SK, Tiwari KL. 2014. Optimization of different parameters for biohydrogen production by Klebsiella oxytoca ATCC 13182. Trends Appl. Sci. Res. 9: 229-237.
    CrossRef
  36. Xu J, Marc MA. 2015. Fermentation of swine wastewaterderived duckweed for biohydrogen production. Int. J. Hydrogen Energy 40: 7028-7036.
    CrossRef
  37. Yenigün O, Demirel B. 2013. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48: 901-911.
    CrossRef
  38. Kayhanian M. 1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20: 355-365.
    CrossRef
  39. Härtel U, Buckel W. 1996. Sodium ion-dependent hydrogen production in Acidaminococcus fermentans. Arch. Microbiol. 166: 350-356.
    Pubmed CrossRef
  40. Brüggemann H, Bäumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, et al. 2003. The genome sequence of Clostridium tetani, the c ausative a gent of t etanus d isease. Proc. Natl. Acad. Sci. USA 100: 1316-1321.
    Pubmed CrossRef Pubmed Central
  41. Boiangiu C D, Jayamani E, Brügel D , Herrmann G, Kim J, Forzi L, et al. 2005. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol. 10: 105-119.
    Pubmed CrossRef
  42. Show KY, Zhang Z P, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2007. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor. Int. J. Hydrogen Energy 32: 4744-4753.
    CrossRef
  43. Kim SH, Han SK, Shin HS. 2006. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 41: 199-207.
    CrossRef
  44. Zhang T, Fang HHP. 2000. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol. Lett. 22: 399-405.
    CrossRef
  45. Bomar M, Hippe H, Schink B. 1991. Lithotrophic growth and hydrogen metabolism by clostridium magnum. FEMS Microbiol. Lett. 83: 347-350.
    CrossRef
  46. Wang X, Hoefel D, Saint CP, Monis PT, Jin B. 2007. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J. Appl. Microbiol. 103: 1415-1423.
    Pubmed CrossRef
  47. Chang J J, Chen WE, S hih SY, Yu SJ, Lay J J, Wen F S, et al. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNAtargeted reverse transcription-PCR. Appl. Microbiol. Biotechnol. 70: 598-604.
    Pubmed CrossRef
  48. Hung CH, Cheng CH, Cheng LH, Liang CM, Lin CY. 2008. Application of clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. Int. J. Hydrogen Energy 33: 1586-1592.
    CrossRef
  49. Minnan L, Jinli H, Xiaobin W, Huijuan X, Jinzao C, Chuannan L, et al. 2005. Isolation and characterization of a high H2-producing strain klebsiella oxytoca HP1 from a hot spring. Res. Microbiol. 156: 76-81.
    Pubmed CrossRef
  50. Sivagurunathan P, Kumar G, Park JH, Park JH, Park HD, Yoon JJ, et al. 2016. Feasibility of enriched mixed cultures obtained by repeated batch transfer in continuous hydrogen fermentation. Int. J. Hydrogen Energy 41: 4393-4403.
    CrossRef
  51. Chen X, Sun Y, Xiu Z, Li X, Zhang D. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549.
    CrossRef
  52. Hitit ZY, Lazaro CZ. Hallenbeck PC. 2017. Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: optimization of yield using response surface methodology. Int. J. Hydrogen Energy 42:6578-6589.
    CrossRef
  53. Long C, Cui J , Liu Z, Liu Y, Long M, Hu Z. 2010. Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int. J. Hydrogen Energy 35: 6657-6664.
    CrossRef
  54. Maru BT, López F, Kengen SWM, Constantí M, Medina F. 2016. Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186: 375-384.
    CrossRef
  55. Yin Y , Wang J. 2 016. C haracterization a nd h ydrogen production performance of a novel strain Enterococcus faecium INET2 isolated from gamma irradiated sludge. Int. J. Hydrogen Energy 41: 22793-22801.
    CrossRef
  56. Song L, Dong X. 2009. Hydrogenoanaerobacterium saccharovorans gen. nov., sp. nov., isolated from H2-producing UASB granules. Int. J. Syst. Evol. Microbiol. 59: 295-299.
    Pubmed CrossRef
  57. Noike T, Takabatake H, Mizuno O, Ohba M. 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 27: 1367-1371.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd