Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-2: 256~267

AuthorNicola Di Fidio, Federico Liuzzi, Silvio Mastrolitti, Roberto Albergo, Isabella De Bari
Place of dutyUniversity of Pisa, Italy.
TitleSingle Cell Oil Production from Undetoxified Arundo donax L. hydrolysate by Cutaneotrichosporon curvatus
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-2
AbstractThe use of low-cost substrates represents one key issue to make single cell oil production sustainable. Among low-input crops, Arundo donax L. is a perennial herbaceous rhizomatous grass containing both C5 and C6 carbohydrates. The scope of the present work was to investigate and optimize the production of lipids by the oleaginous yeast Cutaneotrichosporon curvatus from undetoxified lignocellulosic hydrolysates of steam-pretreated A. donax. The growth of C. curvatus was first optimized in synthetic media, similar in terms of sugar concentration to hydrolysates, by applying the response surface methodology (RSM) analysis. Then the bioconversion of undetoxified hydrolysates was investigated. A fed-batch process for the fermentation of A. donax hydrolysates was finally implemented in a 2-L bioreactor. Under optimized conditions, the total lipid content was 64% of the dry cell weight and the lipid yield was 63% of the theoretical. The fatty acid profile of C. curvatus triglycerides contained 27% palmitic acid, 33% oleic acid and 32% linoleic acid. These results proved the potential of lipid production from A. donax, which is particularly important for their consideration as substitutes for vegetable oils in many applications such as biodiesel or bioplastics.
Full-Text
Key_wordArundo donax L. hydrolysates, cutaneotrichosporon curvatus, single cell oil, second generation sugars, microbial lipids
References
  1. Ghaly AE, Dave D, Brooks MS, Budge S. 2010. Production of biodiesel by enzymatic transesterification. Am. J. Biochem. Biotechnol. 6: 54-76.
    CrossRef
  2. Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT, et al. 2016. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustainable Chem. Eng. 4: 31963211.
    CrossRef
  3. Mba OI, Dumont MJ, Ngadi M. 2015. Palm oil: processing, characterization and utilization in the food industry a review. Food. Biosci. 10: 26-41.
    CrossRef
  4. Coles S. 2013. Bioplastics from Lipids, pp. 117-134. In Kabasci S. (ed), Bio-Based Plastics: Materials and Applications, John Wiley & Sons, Ltd, Chichester, U.K.
    CrossRef
  5. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G. 2016. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 37: 24-35.
    Pubmed CrossRef
  6. Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J. 2009. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl. Biochem. Biotechnol. 159: 591604.
    Pubmed CrossRef
  7. Wu S, Hu C, Jin G, Zhao X, Zhao ZK. 2010. Phosphatelimitation mediated lipid production by Rhodosporidium toruloides. Bioresour. Technol. 101: 6124-6129.
    Pubmed CrossRef
  8. Gong Z, Wang Q, Shen H, Wang L, Xie H, Zhao Z. 2014. Conversion of biomass-derived oligosaccharides into lipids. Biotechnol. Biofuels 7: 13.
    Pubmed CrossRef Pubmed Central
  9. Li Q , Du W, Liu D. 2 008. Perspectives o f m icrobial o ils for biodiesel production. Appl. Microbiol. Biotechnol. 80: 749-756.
    Pubmed CrossRef
  10. Javaid H, Manzoor M, Qazi JI, Xiaochao X, Tabssum F. 2017. Potential of oleaginous yeasts as economic feedstock for biodiesel production. Biologia 63: 217-234.
  11. Huang C, Wu H, Liu QP, Zong MH. 2011. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J. Agric. Food. Chem. 59: 4606-4613.
    Pubmed CrossRef
  12. Carriquiry MA, Du X, Timilsina GR. 2011. Second generation biofuels: economics and policies. Energy Policy 39: 4222-4234.
    CrossRef
  13. Scordia D, Cosentino SL, Lee JW, Jeffries TW. 2012. Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 39: 296-305.
    CrossRef
  14. Yu X, Zheng Y, Dorgan KM, Chen S. 2011. Oil production by oleaginous yeasts using hydrolysate from pretreatment of wheat straw with dilute sulphuric acid. Bioresour. Technol. 71: 340-349.
  15. Ask M, Bettiga M, Duraiswamy VR, Olsson L. 2013. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol. Biofuels 6: 181.
    Pubmed CrossRef Pubmed Central
  16. Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82:340-349.
    CrossRef
  17. Palmqvist E, Hahn-Hägerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25–33.
    CrossRef
  18. Hu C, Zhao X, Zhao J, Wu S, Zhao ZK. 2009. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol. 100: 4843-4847.
    Pubmed CrossRef
  19. Economou CN, Aggelis G, Pavlou S, Vayenas DV. 2011. Single cell oil production from rice hulls hydrolysate. Bioresour. Technol. 102: 9737-9742.
    Pubmed CrossRef
  20. Zhao X, Kong X, Hua Y, Feng B, Zhao ZK. 2008. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur. J. Lipid Sci. Technol. 110: 405-412.
    CrossRef
  21. Gao-Qiang L, Xiao-Ling W. 2007. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl. Microbiol. Biotechnol. 74: 78-83.
    Pubmed CrossRef
  22. Cui FJ, Li Y, Xu ZH, Xu HY, Sun K, Tao WY. 2006. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresour. Technol. 97:1209-1216.
    Pubmed CrossRef
  23. De Bari I, Liuzzi F, Villone A, Braccio G. 2013. Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Appl. Energy 102: 179-189.
    CrossRef
  24. Béligon V, Poughon L, Christophe G, Lebert A, Larroche C, Fontanille P. 2015. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresour. Technol. 192: 582-591.
    Pubmed CrossRef
  25. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911917.
    CrossRef
  26. Christophe G, Lara Deo J, Kumar V, Nouaille R, Fontanille P, Larroche C. 2012. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl. Biochem. Biotechnol. 167: 1270-1279.
    Pubmed CrossRef
  27. Morrison WR, Smith LM. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5: 600-608.
    Pubmed
  28. Yu X, Zheng Y, Xiong X, Chen S. 2014. Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass Bioenergy 71: 340-349.
    CrossRef
  29. Chang YH, Chang KS, Lee CF, Hsu CL, Huang CW, Jang HD. 2015. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72: 95-103.
    CrossRef
  30. Zhang J, Fang X, Zhu XL, Li Y, Xu HP, Zhao BF, et al. 2011. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy 35: 1906-1911.
    CrossRef
  31. Rossi M, Amaretti A, Raimondi S, Leonardi A. 2011. Getting lipids for biodiesel production from oleaginous fungi. biodiesel - feedstocks and processing technologies. IntechOpen 4: 71-92.
  32. Hassan M, B lanc P J, G ranger LM, P areilleux A, Gom a G. 1996. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fedbatch culture. Process Biochem. 31: 355-361.
    CrossRef
  33. Papanikolaou S, Aggelis G. 2011. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113: 1031-1051.
    CrossRef
  34. Donot F, Fontana A, Baccou JC, Schorr-Galindo S. 2012. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 87: 951962.
    CrossRef
  35. Van Bogaert INA, De Maeseneira SL, Vandamme FJ. 2009. Extracellular polysaccharides produced by yeast and yeast-like fungi, pp. 651-671. In: Satyanarayana, Tulasi, Kunze, Gotthard (eds.), Yeast Biotechnology: Diversity and Applications. Springer, Netherlands.
    CrossRef
  36. Luo W, Du W, Su Y, Hui J, Zhuang J, Liu L. 2015. Growth characteristic of the oleaginous microalga Chlorella ellipsoidea SD-0701 with lipid accumulation. Nat. Resour. 6: 130-139.
  37. Liang Y, Jarosz K, Wardlow AT, Zhang J, Cui Y. 2014. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Appl. Biochem. Biotechnol. 173: 2086-2098.
    Pubmed CrossRef
  38. Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao ZK. 2013. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol. Biofuels 6: 36.
    Pubmed CrossRef Pubmed Central
  39. Wu S, Hu C, Zhao X, Zhao ZK. 2010. Production of lipid from N-acetylglucosamine by Cryptococcus curvatus. Eur. J. Lipid Sci. Technol. 112: 727-733.
    CrossRef
  40. Gao J, Atiyeh HK, Phillips JR, Wilkins MR, Huhnke RL. 2013. Development of low cost medium for ethanol production from Syngas by Clostridium ragsdalei. Bioresour. Technol. 147: 508-515.
    Pubmed CrossRef
  41. Lewandowski I, Scurlock JMO, Lindvall E, Christou M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25: 335-361.
    CrossRef
  42. Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E. 2009. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy:Analysis of productive characteristics and energy balance. Biomass Bioenergy 33: 635-643.
    CrossRef
  43. Palm qvist B, L idén G . 2014. Com bining t he e ffects o f process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax. AMB Express 4: 41.
  44. Di Girolamo G, Grigatti M, Barbanti L, Angelidaki I. 2013. Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresour. Technol. 147: 152-159.
    Pubmed CrossRef
  45. Ragaglini G, Dragoni F, Simone M, Bonari, E. 2014. Suitability of giant reed (Arundo donax L.) for anaerobic digestion: Effect of harvest time and frequency on the biomethane yield potential. Bioresour. Technol. 152: 107-115.
    Pubmed CrossRef
  46. Corno L, Pilu R, Adani F. 2014. Arundo donax L.: A non-food crop for bioenergy and bio-compound production. Biotechnol. Adv. 32: 1535-1549.
    Pubmed CrossRef
  47. Pirozzi D, Yousuf A, Zuccaro G, Aruta R, Sannino F. 2012. Synthesis of biodiesel from hydrolysates of Arundo donax. Environ. Eng. Manag. J. 11: 1797-1801.
    CrossRef
  48. Chi Z, Zheng Y, Ma J, Chen S. 2011. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int. J. Hydrogen Energy 36: 9542-9550.
    CrossRef
  49. Yu X, Zeng J, Zheng Y, Chen S. 2014. Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus. Process Biochem. 49: 457-465.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd