Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 1882~1893

AuthorQi Li, Tao Wu, Linguo Zhao, Jianjun Pei, Zhenzhong Wang, Wei Xiao
Place of dutyCollege of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China,Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing 210037, China
TitleHighly Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Sugar-Stimulated モ-Glucosidase and モ-Xylosidase from Dictyoglomus thermophilum
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
Abstractモ-Glucosidases and モ-xylosidases are two categories of enzymes that could cleave out nonreducing, terminal モ-D-glucosyl and モ-D-xylosyl residues with release of D-glucose and Dxylose, respectively. In this paper, two functional モ-glucosidase Dth3 and モ-xylosidase Xln-DT from Dictyoglomus thermophilum were heterologously expressed in E.coli BL21 (DE3). Dth3 and Xln-DT were relatively stable at 75oC and were tolerant or even stimulated by glucose and xylose. Dth3 was highly tolerant to glucose with a Ki value of approximately 3 M. Meanwhile, it was not affected by xylose in high concentration. The activity of Xln-DT was stimulated 2.13- fold by 1 M glucose and 1.29-fold by 0.3 M xylose, respectively. Furthermore, the モ- glucosidase Dth3 and モ-xylosidase Xln-DT showed excellent selectivity to cleave the outer C-6 and C-3 sugar moieties of ASI, which established an effective and green method to produce the more pharmacologically active CAG, an exclusive telomerase activator. We measured temperature, pH and dosage of enzyme using a single-factor experiment in ASI biotransformation. After optimization, the optimal reaction conditions were as follows: 75oC, pH 5.5, 1 U of Dth3 and 0.2 U of Xln-DT, respectively. Under the optimized conditions, 1 g/l ASI was transformed into 0.63 g/l CAG with a corresponding molar conversion of 94.5% within 3 h. This is the first report to use the purified thermostable and sugar-tolerant enzymes from Dictyoglomus thermophilum to hydrolyze ASI synergistically, which provides a specific, environment-friendly and cost-effective way to produce CAG.
Full-Text
Key_wordGlycosidases, sugar-tolerant, biotransformation, astragaloside IV, cycloastragenol
References
  1. He ZQ, Findlay JA. 1991. Constituents of Astragalus membranaceus. J. Nat. Prod. 54: 810-815.
    CrossRef
  2. Choudhary MI, Jan S, Abbaskhan A, Musharraf SG, Samreen, Sattar SA, et al. 2008. Cycloartane triterpenoids from Astragalus bicuspis J. Nat. Prod. 71: 1557-1560.
    Pubmed CrossRef
  3. Ma XQ, Shi Q, Duan JA, Dong TT, Tsim KW. 2002. Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterants and seasonal variations. J. Agric. Food Chem. 50: 4861-4866.
    Pubmed CrossRef
  4. Qi LW, Yu QT, Li P, Li SL, Wang YX, Sheng LH, et al. 2006. Quality evaluation of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors. J. Chromatogr. A. 1134: 162-169.
    Pubmed CrossRef
  5. Peng J , Dong F, Qi Y, Han X , Xu Y, Xu L, et al. 2008. Preparative separation of four triterpene saponins from radix astragali by high-speed counter. Phytochem. Anal. 19: 212-217.
    Pubmed CrossRef
  6. Li H , Zhang Y, Min J, Gao L , Zhang R , Yang Y. 2 018. Astragaloside IV attenuates orbital inflammation in Graves' orbitopathy through suppression of autophagy. Inflamm. Res. 67: 117-127.
    Pubmed CrossRef
  7. Lei L, Hou X, Xu R, Chang L, Tu M. 2017. Research review on the pharmacological effects of astragaloside IV. Fundam Clin. Pharmacol. 31: 17-36.
    Pubmed CrossRef
  8. Cao YL, Wen-Lan LI, Wei LY, Liu XY, Zhi-Hui LI, Wei-Guo HE, et al. 2012. Anti-aging function of Cycloastragenol in aging mice induced by D-galactose. Zhongguo Shiyan Fangjixue Zazhi. 18: 208-211.
  9. Ip FC, Ng YP, An HJ, Dai Y , Pang HH, Hu YQ, et al. 2014. Cycloastragenol is a potent telomerase activator in neuronal cells: implications for depression management. Neurosignals 22: 52-63.
    Pubmed CrossRef
  10. Valenzuela HF, Fuller T, Edwards J, Finger D, Molgora B. 2009. Cycloastragenol extends T cell proliferation by increasing telomerase activity. J. Immunol. 182: 90-30.
  11. Wang L, Chen Y. 2017. Efficient biotransformation of Astragaloside IV to Cycloastragenol by Bacillus sp. LG-502. Appl. Biochem. Biotechnol. 183: 1488-1502.
    Pubmed CrossRef
  12. Feng LM, Lin XH, Huang FX, Cao J, Qiao X, Guo DA, et al. 2014. Smith degradation, an efficient method for the preparation of cycloastragenol from astragaloside IV. Fitoterapia 95: 42-50.
    Pubmed CrossRef
  13. Zhang SD, Jun-Kun LU, Yan JZ, Hui Z. 2016. Research progress of the preparation technology and pharmacological effect of cycloastragenol. Chinese J. New Drugs 16: 1872-1875.
  14. And SD, Rosazza JPN. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508.
    Pubmed CrossRef
  15. Pei J, Xie J, Yin R, Zhao L, Ding G, Wang Z, et al. 2015. Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3 モ-glucosidase from Thermotoga thermarum DSM 5069T. J. Mol. Catal. B: Enzymatic. 113: 104-109.
    CrossRef
  16. Xie J , Zhao D, Zhao L, Pei J , Xiao W, Ding G, et al. 2015. Overexpression and characterization of a Ca2+ activated thermostable モ-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. J. Ind. Microbiol. Biotechnol. 42: 839-850.
    Pubmed CrossRef
  17. Shah S, Tan H, Sultan S, Faridz M, Shah M, Nurfazilah S, et al. 2014. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. Int. J. Mol. Sci. 15: 12027-12060.
    Pubmed CrossRef Pubmed Central
  18. Shi H , Li X, Gu HX, Zhang Y , Huang Y J, Wang LL, et al. 2013. Biochemical properties of a novel thermostable and highly xylose-tolerant beta-xylosidase/alpha-arabinosidase from Thermotoga thermarum. Biotechnol. Biofuels 6: 27.
    Pubmed CrossRef Pubmed Central
  19. Benassi VM, de Lucas RC, Jorge JA, Polizeli MDTD. 2014. Screening of thermotolerant and thermophilic fungi aiming beta-xylosidase and arabinanase production. Braz. J. Microbiol. 45: 1459-1467.
    Pubmed CrossRef Pubmed Central
  20. Patel H , Kumar AK, Shah A. 2 018. P urification and characterization of novel bi-functional GH3 family モxylosidase/モ-glucosidase from Aspergillus niger ADH-11. Int. J. Biol. Macromol. 109: 1260-1269.
    Pubmed CrossRef
  21. Zhao L, Xie J, Zhang X , Cao F , Pei J . 2013. Overexpression and characterization of a glucose-tolerant モ-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. J. Mol. Catal. B: Enzym. 95: 62-69.
    CrossRef
  22. Jonathan MC, Demartini J, Thans SVS, Hommes R, Kabel MA. 2017. Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammoniapretreated corn stover for ethanol production. Biotechnol. Biofuels 10: 112.
    Pubmed CrossRef Pubmed Central
  23. Consolación Á, Manuel RSF, Bruno D. 2016. Enzymatic hydrolysis of biomass from wood. Microb. Biotechnol. 9: 149156.
    Pubmed CrossRef Pubmed Central
  24. Shin KC, Seo MJ, Oh DK. 2014. Characterization of モxylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2. Biotechnol. Lett. 36: 2275-2281.
    Pubmed CrossRef
  25. Zhong FL, Ma R, Jiang M, Dong WW, Jiang J, Wu S, et al. 2016. Cloning and characterization of ginsenoside-hydrolyzing モ-glucosidase from Lactobacillus brevis that transforms Ginsenosides Rb1 and F2 into Ginsenoside Rd and Compound K. J. Microbiol. Biotechnol. 26: 1661-1667.
    Pubmed CrossRef
  26. Li Q, Wu T, Qi Z, Zhao L, Pei J, Tang F. 2018. Characterization of a novel thermostable and xylose-tolerant GH 39 モ-xylosidase from Dictyoglomus thermophilum. BMC Biotechnol. 18: 29.
    Pubmed CrossRef Pubmed Central
  27. Laemmli UK. 1970. Most commonly used discontinuous buffer system for SDS electrophoresis. Nature 227: 680-688.
    Pubmed CrossRef
  28. Huang CH, Sun Y, Ko TP, Chen CC, Zheng Y, Chan HC, et al. 2012. The substrate/product-binding modes of a novel GH120 モ-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biochem. J. 448: 401-407.
    Pubmed CrossRef Pubmed Central
  29. Wan HD, Li D. 2015. Highly efficient biotransformation of ginsenoside Rb1 and Rg3 using モ-galactosidase from Aspergillus sp. RSC Adv. 5: 78874-78879.
    CrossRef
  30. Bhatia Y, Mishra S, Bisaria VS. 2002. Microbial モ-glucosidases:cloning, properties, and applications. Crit. Rev. Biotechnol. 22: 375-407.
    Pubmed CrossRef
  31. Liu Y, Li R, Wang J, Zhang X , Jia R , Gao Y, et al. 2017. Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated モ-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13T. BMC Biochem. 18: 4.
    Pubmed CrossRef Pubmed Central
  32. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127: 500-507.
    Pubmed CrossRef
  33. Xiao Z, Zhang X, Gregg DJ, Saddler JN. 2004. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 116: 1115-1126.
    CrossRef
  34. Yang X, Shi P , Huang H , Luo H , Wang Y, Zhang W, et al. 2014. Two xylose-tolerant GH43 bifunctional モ-xylosidase/メ-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem. 148: 381-387.
    Pubmed CrossRef
  35. Pei J, Wu T, Yao T, Zhao L, Ding G, Wang Z, et al. 2017. Biotransformation of Ginsenosides Re and Rg 1 into Rg 2 and Rh 1 by thermostable モ-glucosidase from Thermotoga thermarum. Chem. Nat. Compd. 53: 1-6.
    CrossRef
  36. Ge L, Chen A, Pei J , Zhao L, Fang X, Gang D, et al. 2017. Enhancing the thermostability of メ-L-rhamnosidase from Aspergillus terreus and the enzymatic conversion of rutin to isoquercitrin by adding sorbitol. BMC Biotechnol. 17: 21.
    Pubmed CrossRef Pubmed Central
  37. Cao L C, Wang ZJ, Ren GH, Kong W, Li L, Xie W , et al. 2015. Engineering a novel glucose-tolerant モ-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol. Biofuels 8:202.
    Pubmed CrossRef Pubmed Central
  38. Zimbardi A, Sehn C, Meleiro L, Souza F, Masui D, Nozawa M, et al. 2013. Optimization of モ-glucosidase, モ-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int. J. Mol. Sci. 14: 2875-2902.
    Pubmed CrossRef Pubmed Central
  39. Long L, Shi H, Li X, Zhang Y, Hu J, Wang F. 2016. Cloning, purification, and characterization of a thermostable モglucosidase from Thermotoga thermarum DSM 5069. Bioresources 11: 3165-3177.
    CrossRef
  40. Yang JK, Yoon HJ, Ahn HJ, Lee B I, Pedelacq JD, Liong EC, et al. 2004. Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J. Mol. Biol. 335: 155-165.
    Pubmed CrossRef
  41. Colussi F, Silva VMD, Miller I, Cota J, Oliveira LCD, Neto MDO, et al. 2015. Oligomeric state and structural stability of two hyperthermophilic モ-glucosidases from Thermotoga petrophila. Amino Acids 47: 937-948.
    Pubmed CrossRef
  42. Souza FHM, Inocentes RF, Ward RJ, Jorge JA, Furriel RPM. 2013. Glucose and xylose stimulation of a モ-glucosidase from the thermophilic fungus Humicola insolens: a kinetic and biophysical study. J. Mol. Catal. B Enzym. 94: 119-128.
    CrossRef
  43. Yang Y, Zhang X, Yin Q, Fang W, Fang Z, Wang X, et al. 2015. A mechanism of glucose tolerance and stimulation of GH1 モ-glucosidases. Sci. Rep. 5: 17296.
    Pubmed CrossRef Pubmed Central
  44. Yao J, Chen QL, Shen AX, Cao W, Liu YH. 2013. A novel feruloyl esterase from a soil metagenomic library with tannase activity. J. Mol. Catal. B Enzym. 95: 55-61.
    CrossRef
  45. Rajasree KP, Mathew GM, Pandey A, Sukumaran RK. 2013. Highly glucose tolerant モ-glucosidase from Aspergillus unguis:NII 08123 for enhanced hydrolysis of biomass. J. Ind. Microbiol. Biotechnol. 40: 967-975.
    Pubmed CrossRef
  46. Kitagawa I, Wang H, Takagi A, Fuchida M , Miura I , Yoshikawa M. 2008. Saponin and Sapogenol. XXXIV. Chemical Constituents of Astragali Radix, the Root of Astragalus membranaceus BUNGE. (1). Cycloastragenol, the 9,19Cycloanostane-type Aglycone of Astragalosides, and the Artifact Aglycone Astragenol. Chem. Pharm. Bull. 31: 689-697.
    CrossRef
  47. Shi X , Xie J , Liao S, Wu T, Zhao LG, Ding G, et al. 2017. High-level expression of recombinant thermostable モglucosidase in Escherichia coli by regulating acetic acid. Bioresour. Technol. 241: 795-801.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd