Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-2: 179~190

AuthorZhang Guoyan, An Yingfeng, Hossain M Zabed, Guo Qi, Miaomiao Yang, Yuan Jiao, Wen Li, Sun Wenjing, Qi Xianghui
Place of dutySchool of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, P.R. China
TitleBacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-2
AbstractBacillus subtilis spore surface display (BSSD) technology is considered to be one of the most promising approaches for expressing heterologous proteins with high activity and stability. Currently, this technology is used for various purposes, such as the production of enzymes, oral vaccines, drugs and multimeric proteins, and the control of environmental pollution. This paper presents an overview of the latest developments in BSSD technology and its application in protein engineering. Finally, the major limitations of this technology and future directions for its research are discussed.
Full-Text
Key_wordBacillus subtilis, spore surface display technology, biocatalysis, gene engineering, anchor protein, linker peptide
References
  1. GP S. 1985. Filamentous fusion phage novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315-1317.
    Pubmed CrossRef
  2. Lindborg M, Magnusson CG, Zargari A, Schmidt M, Scheynius A, Crameri R, et al. 1999. Selective cloning of allergens from the skin colonizing yeast Malassezia furfur by phage surface display technology. J. Invest. Dermatol. 113:156-161.
    Pubmed CrossRef
  3. ET B, KD W. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnol. 15:553-557.
    Pubmed CrossRef
  4. Hu S, Kong J, Sun Z, Han L, Kong W, Yang P. 2011. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein. Microb. Cell Fact. 10: 86-86.
    Pubmed CrossRef Pubmed Central
  5. JinaCheon, Bokim S, Wonpark S, Kwonhan J, Pil Kim. 2009. Characterization of L-arabinose isomerase in Bacillus subtilis, a GRAS host, for the production of edible tagatose. Food Biotechnol. 23: 8-16.
    CrossRef
  6. Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294-6301.
    Pubmed CrossRef Pubmed Central
  7. Wang H, Wang Y, Yang R. 2017. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl. Microbiol. Biotechnol. 101: 933-949.
    CrossRef
  8. Isticato R, Ricca E. 2014. Spore Surface Display. Microbiol. Spectr. 2(5).
    Pubmed CrossRef
  9. Tan IS, Ramamurthi KS. 2014. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 6: 212-225.
    Pubmed CrossRef Pubmed Central
  10. Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15: 172-180.
    Pubmed CrossRef
  11. Moeller R, Schuerger AC, Reitz G, Nicholson WL. 2012. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions. Appl. Environ. Microbiol. 78: 8849-8853.
    Pubmed CrossRef Pubmed Central
  12. Guo Q, An Y, Yun J, Yang M, Magocha TA, Zhu J, et al. 2018. Enhanced d-tagatose production by spore surfacedisplayed l -arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresour. Technol. 247:940-946.
    Pubmed CrossRef
  13. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K. 2013. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J. Med. Microbiol. 62: 1379-1385.
    Pubmed CrossRef
  14. He W, Jiang B, Mu W, Zhang T. 2016. Production of d-allulose with d-psicose 3-epimerase expressed and displayed on the surface of Bacillus subtilis spores. J. Agric. Food Chem. 64:7201-7207.
    CrossRef
  15. Potot S, Serra CR, Henriques AO, Schyns G. 2010. Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl. Environ. Microbiol. 76: 5926-5933.
    Pubmed CrossRef Pubmed Central
  16. Wang H, Yang R, Hua X, Zhang W, Zhao W. 2016. Production using the CotX-mediated spore-displayed betagalactosidase as a biocatalyst. J. Microbiol. Biotechnol. 26:1267-1277.
    Pubmed CrossRef
  17. Wang H, Yang R, Hua X, Zhao W, Zhang W. 2015. Functional display of active β-galactosidase on Bacillus subtilis spores using crust proteins as carriers. Food Sci. Biotechnol. 24: 1755-1759.
    CrossRef
  18. Hwang BY, Pan JG, Kim BG, Kim JH. 2013. Functional display of active tetrameric beta-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13:2313-2319.
    Pubmed CrossRef
  19. Hosseini-Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH. 2016. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331-1337..
    Pubmed CrossRef
  20. Iwanicki A, Piątek I, Stasiłojć M, Grela A, Łęga T, Obuchowski M, et al. 2014. A system of vectors for Bacillus subtilis spore surface display. Microbial. Cell Fact. 13: 30.
    Pubmed CrossRef Pubmed Central
  21. Gupta N, Farinas ET. 2010. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng. Des. Sel. 23: 679-682.
    Pubmed CrossRef
  22. Gwak S, Almirall JR. 2015. Rapid screening of 35 new psychoactive substances by ion mobility spectrometry (IMS) and direct analysis in real time (DART) coupled to quadrupole time-of-flight mass spectrometry (QTOF-MS). Drug Test. Anal. 7: 884-893.
    Pubmed CrossRef
  23. Hinc K, Iwanicki A, Obuchowski M. 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb. Cell Fact. 12: 22.
    Pubmed CrossRef Pubmed Central
  24. Huang Z, Li G, Zhang C, Xing XH. 2016. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library. Enzyme Microb. Technol. 83: 1-6.
    Pubmed CrossRef
  25. Potocki W, Negri A, Peszynska-Sularz G, Hinc K, Obuchowski M, Iwanicki A. 2017. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microb. Cell Fact. 16: 151.
    Pubmed CrossRef Pubmed Central
  26. Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM. 2003. Bacterial Spores as Vaccine Vehicles. Infect. Immun. 71:2810-2818.
    CrossRef Pubmed Central
  27. Uyen NQ, Hong HA, Cutting SM. 2007. Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine 25:356-365.
    Pubmed CrossRef
  28. Ciabattini A, Parigi R, Isticato R, Oggioni MR, Pozzi G. 2004. Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine 22: 4139-4143.
    Pubmed CrossRef
  29. Nguyen AT, Pham CK, Pham HT, Pham HL, Nguyen AH, Dang LT, et al. 2014. Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome. FEMS Microbiol Lett. 358: 202-208.
    Pubmed CrossRef
  30. Sun H, Lin Z, Zhao L, Chen T, Shang M, Jiang H, et al. 2018. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate. Parasit. Vectors. 11: 156.
    Pubmed CrossRef Pubmed Central
  31. Wang X , Chen W , Tian Y , Mao Q, L v X, S hang M , et al. 2014. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 32: 1338-1345.
    Pubmed CrossRef
  32. Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, et al. 2008. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817-1825.
    Pubmed CrossRef
  33. Li L, Hu X, Wu Z, Xiong S, Zhou Z, Wang X, et al. 2009. Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res. 105: 1643-1651.
    Pubmed CrossRef
  34. Feng F, Hu P, Chen L, T ang Q, L ian C, Y ao Q , et al. 2013. Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Curr. Microbiol. 67: 1-8.
    Pubmed CrossRef
  35. Cao Y-G, Li Z-H, Yue Y-Y, Song N-N, Peng L, Wang L-X, et al. 2013. Construction and evaluation of a novel Bacillus subtilis spores-based enterovirus 71 vaccine. J. Appl. Biomed. 11: 105-113.
    CrossRef
  36. Zhao G , Miao Y , Guo Y, Q iu H , Sun S , Kou Z, et al. 2014. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine. Hum. Vaccin Immunother. 10: 3649-3658.
    Pubmed CrossRef Pubmed Central
  37. Yuan Y, Feng F, Chen L, Yao Q, Chen K. 2013. Surface display of Acetobacter pasteurianus AdhA on Bacillus subtilis spores to enhance ethanol tolerance for liquor industrial potential. Eur. Food Res. Technol. 238: 285-293.
    CrossRef
  38. Falahati-Pour SK, Lotfi AS, Ahmadian G, Baghizadeh A. 2015. Covalent immobilization of recombinant organophosphorus hydrolase on spores of Bacillus subtilis. J. Appl. Microbiol. 118: 976-988.
    Pubmed CrossRef
  39. Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi KA, Ricca E, et al. 2010. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res. Microbiol. 161: 757764.
    Pubmed CrossRef
  40. Cho EA, Seo J, Lee DW, Pan JG. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb. Technol. 49: 100-104.
    Pubmed CrossRef
  41. Hwang BY, Kim BG, Kim JH. 2011. Bacterial surface display of a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci.Biotechnol. Biochem. 75: 1862-1865.
    Pubmed CrossRef
  42. Kim JH, Lee CS, Kim BG. 2005. Spore-displayed streptavidin:a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214.
    Pubmed CrossRef
  43. Kwon SJ, Jung HC, Pan JG. 2007. Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251-2256.
    Pubmed CrossRef Pubmed Central
  44. Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. 2017. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic Biochem. Physiol. 140: 17-23.
    Pubmed CrossRef
  45. Duc le H, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijpkema S, et al. 2007. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25: 346-355.
    Pubmed CrossRef
  46. Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM. 2008. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect. Immun. 76: 5257-5265.
    Pubmed CrossRef Pubmed Central
  47. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszynska-Sularz G, et al. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact. 9: 2.
    Pubmed CrossRef Pubmed Central
  48. Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, et al. 2011. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect. Immun. 79: 2295-2302.
    Pubmed CrossRef Pubmed Central
  49. Tavares Batista M, Souza RD, Paccez JD, Luiz WB, Ferreira EL, Cavalcante RC, et al. 2014. Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect. Immun. 82: 1414-1423.
    Pubmed CrossRef Pubmed Central
  50. Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, et al. 2014. Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol. Lett. 358:170-179.
    Pubmed CrossRef
  51. Nguyen QA, Schumann W. 2014. Use of IPTG-inducible promoters for anchoring recombinant proteins on the Bacillus subtilis spore surface. Protein Expr. Purif. 95: 67-76.
    Pubmed CrossRef
  52. Hinc K, Stasilojc M, Piatek I, Peszynska-Sularz G, Isticato R, Ricca E, et al. 2014. Mucosal adjuvant activity of IL-2 presenting spores of bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS One 9: e95187.
    Pubmed CrossRef Pubmed Central
  53. Chen H, Zhang T, Jia J, Vastermark A, Tian R, Ni Z, et al. 2015. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein. J. Ind. Microbiol. Biotechnol. 42: 1439-1448.
    Pubmed CrossRef
  54. Chen H, Tian R, Ni Z, Zhang Q, Zhang T, Chen Z, et al. 2015. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 19: 799-808.
    Pubmed CrossRef
  55. Mauriello EM, Duc le H, Isticato R, Cangiano G, Hong HA, De Felice M, et al. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22: 1177-1187.
    Pubmed CrossRef
  56. Li G, Tang Q, Chen H, Yao Q, Ning D, Chen K. 2011. Display of Bombyx mori nucleopolyhedrovirus GP64 on the Bacillus subtilis spore coat. Curr. Microbiol. 62: 1368-1373.
    Pubmed CrossRef
  57. Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, et al. 2011. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One 6: e21454.
    Pubmed CrossRef Pubmed Central
  58. Mao L, Jiang S, Li G, He Y, Chen L, Yao Q, et al. 2012. Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr. Microbiol. 64: 545-551.
    Pubmed CrossRef
  59. Tavassoli S, Hinc K, Iwanicki A, Obuchowski M, Ahmadian G. 2013. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst. Arch. Microbiol. 195: 197-202.
    Pubmed CrossRef
  60. Lian C, Zhou Y, Feng F, Chen L, Tang Q, Yao Q, et al. 2014. Surface display of human growth hormone on Bacillus subtilis spores for oral administration. Curr. Microbiol. 68:463-471.
    Pubmed CrossRef
  61. Zhou Z, Gong S, Li XM, Yang Y, Guan R, Zhou S, et al. 2015. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. J. Med. Microbiol. 64: 104110.
    Pubmed CrossRef
  62. Dai X, Liu M, Pan K, Yang J. 2018. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One 13: e0191627.
    Pubmed CrossRef Pubmed Central
  63. Gao C , Xu X , Zhang X, C he B , Ma C, Qiu J, et al. 2011. Chemoenzymatic synthesis of N-acetyl-D-neuraminic acid from N-acetyl-D-glucosamine by using the spore surfacedisplayed N-acetyl-D-neuraminic acid aldolase. Appl. Environ. Microbiol. 77: 7080-7083.
    Pubmed CrossRef Pubmed Central
  64. Qu Y, Wang J, Zhang Z, Shi S, Li D, Shen W, et al. 2014. Catalytic transformation of HODAs using an efficient metacleavage product hydrolase-spore surface display system. J. Mol. Catal. 102: 204-210.
    CrossRef
  65. Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, et al. 2016. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J. Mol. Catal. 123: 73-80.
    CrossRef
  66. Xu X, Gao C, Zhang X, Che B, Ma C, Qiu J, et al. 2011. Production of N-acetyl-D-neuraminic acid by use of an efficient spore surface display system. Appl. Environ. Microbiol. 77: 3197-3201.
    Pubmed CrossRef Pubmed Central
  67. Liu Y, Li S, Xu H, Wu L, Xu Z, Liu J, et al. 2014. Efficient production of D-tagatose using a food-grade surface display system. J. Agric. Food Chem. 62: 6756-6762.
    Pubmed CrossRef
  68. Wittmann A, Suess B. 2012. Engineered riboswitches:Expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett. 586: 2076-2083.
    Pubmed CrossRef
  69. Zhang Z, Liu J, Fan J, Wang Z, Li L. 2018. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 1009: 65-72.
    Pubmed CrossRef
  70. Fantino JR, Barras F, Denizot F. 2009. Sposensor: a wholebacterial biosensor that uses immobilized Bacillus subtilis spores and a one-step incubation/detection process. J. Mol. Microbiol. Biotechnol. 17: 90-95.
    Pubmed CrossRef
  71. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24: 142-153.
    Pubmed CrossRef Pubmed Central
  72. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15: 554.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd