Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-1: 171~177

AuthorAyaz Anwar, Ruqaiyyah Siddiqui, Muhammad Shah, Naveed Khan
Place of dutyDepartment of Biological Sciences, School of Science and Technology, Sunway University, Malaysia
TitleGold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-1
AbstractParasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these goldconjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.
Full-Text
Key_wordAcanthamoeba, antimicrobial, gold nanoparticles, amphotericin B, fluconazole, nystatin
References
  1. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, et al. 2014. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682-10686.
    Pubmed CrossRef Pubmed Central
  2. Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, et al. 2017. Pharmaceutical Intermediate-modified gold nanoparticles:against multidrug-resistant bacteria and wound-healing application via electrospun scaffold. ACS Nano 11: 5737-5745.
    Pubmed CrossRef
  3. Maincent P, Le Verge R, Sado P, Couvreur P, Devissaguet J-P. 1986. Disposition kinetics and oral bioavailability of vincamineloaded polyalkyl cyanoacrylate nanoparticles. J. Pharm. Sci. 75: 955-958.
    Pubmed CrossRef
  4. Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA. 2016. Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine. Antimicrob. Agents Chemother. 60:1283-1288.
    Pubmed CrossRef Pubmed Central
  5. Grace AN, Pandian K. 2007. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surfaces A: Physicochem. Eng. Aspects. 297: 63-70.
    CrossRef
  6. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. 2012. Nanoparticles as drug delivery systems. Pharmacol. Rep. 64: 1020-1037.
    CrossRef
  7. Martinez A, Visvesvara G. 1991. Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid. Clin. Lab Med. 11: 861-872.
    CrossRef
  8. Marciano-Cabral F, Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16: 273-307.
    Pubmed CrossRef Pubmed Central
  9. Khan NA. 2006. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol. Rev. 30: 564-595.
    Pubmed CrossRef
  10. Seal D, Hay J, Kirkness C. 1995. Chlorhexidine or polyhexamethylene biguanide for Acanthamoeba keratitis. Lancet 345: 136.
    CrossRef
  11. Ishibashi Y, Matsumoto Y, Kabata T, Watanabe R, Hommura S, Yasuraoka K, et al. 1990. Oral itraconazole and topical miconazole with debridement for Acanthamoeba keratitis. Am. J. Ophthalmol. 109: 121-126.
    CrossRef
  12. Visvesvara GS, Moura H, Schuster FL. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 50: 1-26.
    Pubmed CrossRef
  13. Girois S, Chapuis F, Decullier E, Revol B. 2005. Adverse effects of antifungal therapies in invasive fungal infections:review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 24: 119-130.
    Pubmed CrossRef
  14. Martín-Navarro CM, López-Arencibia A, Sifaoui I, ReyesBatlle M, Valladares B, Martínez-Carretero E, et al. 2015. Statins and voriconazole induce programmed cell death in Acanthamoeba castellanii. Antimicrob. Agents Chemother. 59:2817-2824.
    Pubmed CrossRef Pubmed Central
  15. Thomson S, Rice CA, Zhang T, Edrada-Ebel R, Henriquez FL, Roberts CW. 2017. Characterisation of sterol biosynthesis and validation of 14α-demethylase as a drug target in Acanthamoeba. Sci. Rep. 7: 8247.
    Pubmed CrossRef Pubmed Central
  16. Anwar A, Siddiqui R, Hussain MA, Ahmed D, Shah MR, Khan NA. 2018. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol. Res. 117: 265-271.
    CrossRef
  17. Anwar A, Shah MR, Muhammad SP, Afridi S, Ali K. 2016. Thiopyridinium capped silver nanoparticle based supramolecular recognition of Cu (I) in real samples and T-lymphocytes. New J. Chem. 40: 6480-6486.
    CrossRef
  18. Sissons J, Alsam S, Stins M, Rivas AO, Morales JL, Faull J, et al. 2006. Use of in vitro assays to determine effects of human serum on biological characteristics of Acanthamoeba castellanii. J. Clin. Microbiol. 44: 2595-2600.
    Pubmed CrossRef Pubmed Central
  19. Khan NA, Siddiqui R. 2009. Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int. J. Parasitol. 39: 1611-1616.
    Pubmed CrossRef
  20. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al. 2017. Identification and characterization of antibacterial compound (s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol. 101: 253-286.
    Pubmed CrossRef
  21. Radwan MA, AlQuadeib BT, Šiller L, Wright MC, Horrocks B. 2017. Oral administration of amphotericin B nanoparticles:antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 24: 40-50.
    Pubmed CrossRef
  22. Rodino S, Butu M, Negoescu C, Caunii A, Cristina R, Butnariu M. 2014. Spectrophotometric method for quantitative determination of nystatin antifungal agent in pharmaceutical formulations. Digest J. Nanomater. Biostruc. 9: 1215-1222.
  23. Singh A, Sharma P, Majumdar D. 2011. Development and validation of different UV-spectrophotometric methods for the estimation of fluconazole in bulk and in solid dosage form. Indian J. Chem. Technol. 18: 357-362.
  24. Suri SS, Fenniri H, Singh B. 2007. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2: 16.
    Pubmed CrossRef Pubmed Central
  25. Walsh M D, Hanna S K, S en J , Rawal S, C abral CB , Yurkovetskiy AV, et al. 2012. Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin. Cancer Res. 18: 2591-2602.
    Pubmed CrossRef
  26. Zazo H, Colino CI, Lanao JM. 2016. Current applications of nanoparticles in infectious diseases. J. Control Release. 224:86-102.
    Pubmed CrossRef
  27. Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA. 2017. Size selectivity in antibiofilm activity of 3-(diphenylphosphino) propanoic acid coated gold nanomaterials against Gram-positive Staphylococcus aureus and Streptococcus mutans. AMB Express 7: 210.
    Pubmed CrossRef Pubmed Central
  28. Dakal TC, Kumar A, Majumdar RS, Yadav V. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 7: 1831.
    Pubmed CrossRef Pubmed Central
  29. Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720.
    Pubmed CrossRef Pubmed Central
  30. Zhao G, Stevens SE. 1998. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11: 27-32.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd