Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2018 ; Vol.28-10: 1645~1653

AuthorEun-Joo Kim, Min-jae Kang, Yong Bae Seo, Soo-Wan Nam, Gun-Do Kim
Place of dutyDepartment of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
TitleAcer okamotoanum Nakai Leaf Extract Inhibits Adipogenesis Via Suppressing Expression of PPAR γ and C/EBP α in 3T3-L1 Cells
PublicationInfo J. Microbiol. Biotechnol.2018 ; Vol.28-10
AbstractThe genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPAR γ) and CCAAT/enhancer binding protein α (C/EBP α). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR γ. LEAO also activated β-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR γ. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.
Full-Text
Key_wordAcer okamotoanum, adipogenesis, anti-obesity, 3T3-L1 adipocytes
References
  1. Pi-Sunyer FX. 2002. The obesity epidemic: pathophysiology and consequences of obesity. Obesity 10: 97S-104S.
  2. Lawrence VJ, Kopelman PG. 2004. Medical consequences of obesity. Clin. Dermatol. 22: 296-302.
    Pubmed CrossRef
  3. Marti A, Moreno-Aliaga M, Hebebrand J, Martinez J. 2004. Genes, lifestyles and obesity. Int. J. Obes. 28: S29-S36.
    Pubmed CrossRef
  4. Spiegelman BM, Flier JS. 1996. Adipogenesis and obesity:rounding out the big picture. Cell 87: 377-389.
    CrossRef
  5. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. 2013. Adipocyte and adipogenesis. Eur. J. Cell Biol. 92: 229-236.
    Pubmed CrossRef
  6. Farmer SR. 2006. Transcriptional control of adipocyte formation. Cell Metabolism. 4: 263-273.
    Pubmed CrossRef Pubmed Central
  7. Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nature Reviews. Mol. Cell Biol. 7: 885-896.
    Pubmed CrossRef
  8. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. 1999. PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4: 611-617.
    CrossRef
  9. Saltiel AR, Kahn CR. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799806.
    Pubmed CrossRef
  10. Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149: 274-293.
    Pubmed CrossRef Pubmed Central
  11. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. 2009. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 20: 16-24.
    Pubmed CrossRef Pubmed Central
  12. Bi W, G ao Y , S hen J, H e C, L iu H , Peng Y , et al. 2016. Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): a review. J. Ethnopharmacol. 189: 31-60.
    Pubmed CrossRef
  13. Jin L, Han JG, Ha JH, Jeong HS, Kwon MC, Jeong MH, et al. 2008. Comparison of antioxidant and glutathione S-transferase activities of extracts from Acer mono and A. okamotoanum. Korean J. Med. Crop Sci. 16: 427-433.
  14. Yang H, Hwang I, Koo TH, Ahn HJ, Kim S, Park MJ, et al. 2012. Beneficial effects of Acer okamotoanum sap on L-NAMEinduced hypertension-like symptoms in a rat model. Mol. Med. Rep. 5: 427-431.
    Pubmed
  15. Yoo Y, Jung E, Kang H, Choi I, Choi K, Jeung E. 2011. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats. Int. J. Mol. Med. 28: 489-495.
    Pubmed
  16. Rayalam S, Della-Fera MA, Baile CA. 2008. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717-726.
    Pubmed CrossRef
  17. Yun JW. 2010. Possible anti-obesity therapeutics from nature–a review. Phytochemistry 71: 1625-1641.
    Pubmed CrossRef
  18. Feng S, Reuss L, Wang Y. 2016. Potential of natural products in the inhibition of adipogenesis through regulation of PPAR γ expression and/or its transcriptional activity. Molecules 21: 1278.
    Pubmed CrossRef
  19. Farmer S. 2005. Regulation of PPAR [gamma] activity during adipogenesis. Int. J. Obes. 29: S13-S16.
    Pubmed CrossRef
  20. Rosen E D, H su C H, W ang X, S akai S , Freeman MW, Gonzalez FJ, et al. 2002. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16: 22-26.
    Pubmed CrossRef Pubmed Central
  21. Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839-848.
    Pubmed CrossRef
  22. Kim JB, Spiegelman BM. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10: 1096-1107.
    Pubmed CrossRef
  23. Chirala S S , Wakil SJ. 2004. S tructure and function of animal fatty acid synthase. Lipids 39: 1045-1053.
    Pubmed CrossRef
  24. Fu Y, Luo N, Klein RL, Garvey WT. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379.
    Pubmed CrossRef
  25. Whitehead JP, Clark S F, Ursø B, James DE. 2 000. S ignalling through the insulin receptor. Curr. Opin. Cell Biol. 12: 222-228.
    CrossRef
  26. Khan A, Pessin J. 2002. Insulin regulation of glucose uptake:a complex interplay of intracellular signalling pathways. Diabetologia 45: 1475-1483.
    Pubmed CrossRef
  27. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, et al. 2009. Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 48: 307-343.
    Pubmed CrossRef
  28. Zhang HH, H uang J , Düvel K, Boback B, W u S , S quillace RM, et al. 2009. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 4: e6189.
    Pubmed CrossRef Pubmed Central
  29. Kim JE, Chen J. 2004. Regulation of peroxisome proliferatoractivated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53:2748-2756.
    CrossRef
  30. Laplante M, Sabatini DM. 2009. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19: R1046-R1052.
    Pubmed CrossRef Pubmed Central
  31. Fox HL, Kimball SR, Jefferson LS, Lynch CJ. 1998. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am. J. Physiol. 274: C206-C213.
    Pubmed CrossRef
  32. Wu D, Pan W. 2010. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35: 161-168.
    Pubmed CrossRef Pubmed Central
  33. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. 2006. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J. Biol. Chem. 281: 9971-9976.
    Pubmed CrossRef
  34. Grimes CA, Jope RS. 2001. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol. 65:391-426.
    CrossRef
  35. Ding VW, Chen RH, McCormick F. 2000. Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J. Biol. Chem. 275: 32475-32481.
    Pubmed CrossRef
  36. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, et al. 2007. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J. Biol. Chem. 282: 1122111229.
    Pubmed CrossRef Pubmed Central
  37. Liu J, Farmer SR. 2004. Regulating the balance between peroxisome proliferator-activated receptor gamma and betacatenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of betacatenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 279: 45020-45027.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd