Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-4: 507~517

AuthorWei Tang, Yue Wang, Jun Zhang, Yali Cai, Zengguo He
Place of dutySchool of Medicine and Pharmacy, Ocean University of China, P.R. China,Marine Biomedical Research Institute of Qingdao, P.R. China
TitleBiosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-4
AbstractRhodotorula is a group of pigment-producing yeasts well known for its intracellular biosynthesis of carotenoids such as β-carotene, γ-carotene, torulene and torularhodin. The great potential of carotenoids in applications in food and feed as well as in health products and cosmetics has generated a market value expected to reach over $2.0 billion by 2022. Due to growing public concern over food safety, the demand for natural carotenoids is rising, and this trend significantly encourages the use of microbial fermentation for natural carotenoid production. This review covers the biological properties of carotenoids and the most recent findings on the carotenoid biosynthetic pathway, as well as strategies for the metabolic engineering methods for the enhancement of carotenoid production by Rhodotorula. The practical approaches to improving carotenoid yields, which have been facilitated by advancements in strain work as well as the optimization of media and fermentation conditions, were summarized respectively
Full-Text
Key_wordRhodotorula, carotenoids, biosynthetic pathway, strategies
References
  1. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1996. Ainsworth & Bisby’s dictionary of the fungi. Revista Do Instituto De Medicina Tropical De São Paulo 38:17-19.
    CrossRef
  2. Kurtzman CP. 2011. The Yeasts, a Taxonomic Study, pp. 233-234. 5th Ed. Taylor & Francis, London.
  3. Wirth F, Goldani LZ. 2012. Epidemiology of Rhodotorula: an emerging pathogen. Interdisciplinary Perspectives on Infectious Diseases. Article ID 465717: 7.
    CrossRef
  4. Rose AH, Harrison JS. 1987. The Yeasts (ed by Rose AH, Harrison JS). 2:181-250.
  5. Prabhala RH, Braune LM, Garewal HS, Watson RR. 2010. Influence of beta-carotene on immune functions. Ann. NY Acad. Sci. 691:262-263.
    CrossRef
  6. Hennekens CH. 1997. β-Carotene supplementation and cancer prevention. Nutrition 13:697.
    CrossRef
  7. Andrew McWilliams. 2018. The global market for carotenoids. Available from https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids-fod025f.html. Accessed Jun. 2018.
  8. Buzzini P, Innocenti M, Turchetti B, Libkind D, Van BM, Mulinacci N. 2007. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can. J. Microbiol. 53: 1024-1031.
    CrossRef
  9. Villoutreix J. 1960. Les caroténoïdes de Rhodotorula mucilaginosa, étude de leur biosynthèse a l'aide de l'analyse de mutants et de l'emploi d'un inhibiteur de la caroténogénèse. Biochimica et Biophysica Acta 40:442-457.
    CrossRef
  10. Landolfo S, Ianiri G, Camiolo S, Porceddu A, Mulas G, Chessa R, et al. 2018. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology 164:78-87.
    Pubmed CrossRef
  11. Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J. 2018. Torulene and torularhodin: “new” fungal carotenoids for industry? Microb. Cell. Fact. 17:49.
    CrossRef
  12. Azmi Wamik TM, Kumari Priyanka. 2011. Production of a heat stable β-carotene with antioxidant activity by Rhodotorula sp. Int. Food Ferment. Technol. 1: 83-91.
  13. Perrier V, Dubreucq E, Galzy P. 1995. Fatty acid and carotenoid composition of Rhodotorula strains. Arch. Microbiol.164: 173-179.
    CrossRef
  14. Rodriguez-Concepcion M, Stange C. 2013. Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch. Biochem. Biophys. 539:110-116.
    Pubmed CrossRef
  15. Fromageot C, Tchang JL. 1938. Sur les pigments caroténoïdes de Rhodotorula Sanniei. Arch. Mikrobiol. 9:424-433.
    CrossRef
  16. Bonner J, Sandoval A, Tang YW, Zechmeister L. 1946. Changes in polyene synthesis induced by mutation in a red yeast. Arch. Biochem. 10:113.
  17. Razavi SH, Marc I. 2006. Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iran. J. Chem. Chem. Eng. 25:59-64.
  18. Ungureanu C, Ferdes M. 2012. Evaluation of Antioxidant and Antimicrobial Activities of Torularhodin. Adv. Sci. Lett.18: 50-53(54).
    CrossRef
  19. Sakaki H, Nochide H, Komemushi S, Miki W. 2002. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No.21. J. Biosci. Bioeng. 93:338-340.
    CrossRef
  20. Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S.2001. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J. Biosci. Bioeng. 92:294-297.
    CrossRef
  21. Du C, Li Y, Guo Y, Han M, Zhang W, Qian H. 2016. The suppression of torulene and torularhodin treatment on the growth of PC-3 xenograft prostate tumors. Biochem. Bioph. Res. Co. 469:1146-1152.
    Pubmed CrossRef
  22. Chao D, Guo Y, Cheng Y, Mei H, Zhang W, He Q. 2017. Torulene and torularhodin, protects human prostate stromal cells from hydrogen peroxide-induced oxidative stress damage through the regulation of Bcl-2/Bax mediated apoptosis. Free Radic. Res. 51:113-123.
    Pubmed CrossRef
  23. Libkind D, Brizzio S, Van BM. 2004. Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian highaltitude lake. Folia. Microbiol. 49: 19-25.
    CrossRef
  24. Aksu Z, Eren AT. 2007. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem. Eng. J. 35:107-113.
    CrossRef
  25. Tkáčová J FK, Klempová T, et al. 2015. Screening of carotenoidproducing Rhodotorula strains isolated from natural sources. Acta Chimica Slovaca 8:34-38.
    CrossRef
  26. Bhosale P, Gadre RV. 2001. Production of β-carotene by a Rhodotorula glutinis mutant in sea water medium. Bioresour.Technol. 76:53-55.
    CrossRef
  27. Wang SL, Sun JS, Han BZ, Wu XZ. 2010. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. J. Food. Sci. 72:325-329.
    Pubmed CrossRef
  28. Liu S, Li Q, Liu HL, Jia T, Xie DP. 2012. Mutation breeding of high-yield carotenoid producing Rhodotorula mucilaginosa by N~+ implantation and optimization of solid-state fermentation conditions for carotenoid production. Food Sci. 23:244-248.
  29. Cong L, Chi Z, Li J, Wang X. 2007. Enhanced carotenoid production by a mutant of the marine yeast Rhodotorula sp. hidai. J. Ocean. U. China. 6:66-71.
    CrossRef
  30. Yolmeh M, Khomeiri M. 2016. Using physical and chemical mutagens for enhanced carotenoid production from Rhodotorula glutinis (PTCC 5256). Biocatal. Agric. Biotechnol. 8:158-166.
    CrossRef
  31. Zhang Z, Zhang X, Tan T. 2014. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/hightemperature and dark/low-temperature cultivation. Bioresour. Technol. 157:149-153.
    Pubmed CrossRef
  32. Yen HW, Yang YC. 2012. The effects of irradiation and microfiltration on the cells growing and total lipids production in the cultivation of Rhodotorula glutinis. Bioresour. Technol.107:539-541.
    Pubmed CrossRef
  33. Yen HW, Zhang Z. 2011. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis. Bioresour. Technol. 102:9279-9281.
    Pubmed CrossRef
  34. Hayman EP, Yokoyama H, Chichester CO, Simpson KL.1974. Carotenoid biosynthesis in Rhodotorula glutinis. J.Bacteriol. 120:1339.
  35. Simpson KL, Nakayama TO, Chichester CO. 1964. Biosynthesis of yeast carotenoids. J. Bacteriol. 88: 1688-1694.
  36. Buzzini P, Martini A. 2000. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour. Technol. 71:41-44.
    CrossRef
  37. Bhosale P, Gadre RV. 2010. Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34:349-353.
    CrossRef
  38. Komemushi S, Sakaki H, Yokoyama H, Fujita T. 1994. Effect of barium and other metals on the growth of a D-lactic acid assimilating yeast Rhodotorula glutinis N21. J. Antibact. Antifungal. Agent 22:583-587.
  39. Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P. 2005. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme. Microb. Technol. 36:687-692.
    CrossRef
  40. Kim BK, Park PK, Chae HJ, Kim EY. 2004. Effect of phenol on β-carotene content in total carotenoids production in cultivation of Rhodotorula glutinis. Korean. J. Chem. Eng. 21:689-692.
    CrossRef
  41. Britton G, Singh RK, Malhotra HC, Goodwin TW, Ben-Aziz A. 1977. Biosynthesis of 1,2-dihydrocarotenoids in Rhodopseudomonas viridis: experiments with inhibitors. Phytochemistry 16:1561-1566.
    CrossRef
  42. Squina FM, Mercadante AZ. 2010. Influence of nicotine and diphenylamine on the carotenoid composition of Rhodotorula strains. J. Food. Biochem. 29:638-652.
    CrossRef
  43. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. 2014. Biotechnological production of carotenoids by yeasts:an overview. Microb. Cell. Fact. 13:12.
    CrossRef
  44. Fang TJ, Cheng Y-S. 1993. Improvement of Astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J. Ferment. Bioeng. 75:466-469.
    CrossRef
  45. Frengova GI, Simova ED, Beshkova DM. 2004. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis. Z. Naturforsch. C. 59:99-103.
    Pubmed CrossRef
  46. Wang SL, Liu W, Wang HX, Lv CH. 2012. Ultra highpressure and ion implantation combined mutagenesis to improve the production of β-carotene from red yeast. Adv. Mater. Res. II 554-556:1165-1169.
    CrossRef
  47. Nasrabadi MRN, Razavi SH. 2011. Optimization of β-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum, from whey ultrafiltrate. Food. Sci. Biotechnol. 20:445-454.
    CrossRef
  48. Sakaki H, Nochide H, Komemushi S, Namikawa K, Miki W.2001. Torularhodin as a potent scavenger against peroxyl radicals isolated from a soil yeast, Rhodotorula glutinis. J. Clin. Biochem. Nutr. 30:1-10.
    CrossRef
  49. Wang SL, Sha X, Wang HX, 2016. Improving yield of beta carotene in red yeast by using fermentation promoter. Food Nut. China. 22:58-60.
  50. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. 2012. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manage 95: S338-S342.
    CrossRef
  51. Husseiny SM, Abdelhafez AA, Ali AA, Sand HM, Husseiny SM, Abdelhafez AA, et al. 2017. Optimization of β-carotene production from Rhodotorula glutinis ATCC 4054 growing on agro-industrial substrate using plackett-burman design. P. Natl. A. Sci. India 3:1-10.
    CrossRef
  52. Taskin M, Sisman T, Erdal S, Kurbanoglu EB. 2011. Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur. Food. Res. Technol. 233:657-665.
    CrossRef
  53. Aksu Z, Eren AT. 2005. Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process. Biochem. 40:2985-2991.
    CrossRef
  54. Petrik S, Marova I, Haronikova A, Kostovova I, Breierova E. 2013. Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production - a comparative screening study. Ann. Microbiol. 63:1537-1551.
    CrossRef
  55. Rodríguez-Sáiz MFJLDL, Barredo JL. 2010. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl. Microbiol. Biotechnol. 88:645-658.
    Pubmed CrossRef
  56. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, et al. 2012. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat. Commun. 3: 1112.
    CrossRef
  57. Sambles C, Middelhaufe S, Soanes D, Kolak D, Lux T, Moore K, et al. 2017. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609. Genom.Data 13:1-2.
    Pubmed CrossRef Pubmed Central
  58. Paul D, Magbanua Z, Arick M, French T, Bridges SM, Burgess SC, et al. 2014. Genome Sequence of the Oleaginous Yeast Rhodotorula glutinis ATCC 204091. Genome Announc. 2:1-2.
    Pubmed CrossRef Pubmed Central
  59. Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, et al. 2015. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front. Microbiol. 6:978.
    CrossRef
  60. Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers A N, S avka M A, et al. 2017. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis.PeerJ. 5:1-18.
    Pubmed CrossRef Pubmed Central
  61. Deligios M, Fraumene C, Abbondio M. 2015. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc. 3:1-2.
    Pubmed CrossRef Pubmed Central
  62. Tkavc R, Matrosova VY, Grichenko OE. 2017. Prospects for fungal bioremediation of acidic radioactive waste sites characterization and genome sequence of Rhodotorula taiwanensis MD1149. Front. Microbiol. 8:2528.
    CrossRef
  63. Miccoli C, Palmieri D, Curtis FD, Lima G, Ianiri G, Castoria R. 2018. Complete genome sequence of the biocontrol agent yeast Rhodotorula kratochvilovae Strain LS11. Genome Announc.6:1-2.
    Pubmed CrossRef Pubmed Central
  64. Kim S, Kim J, Jung W, Kim J, Jung J. 2006. Over-production of beta-carotene from metabolically engineered Escherichia coli. Biotechnol. Lett. 28:897-904.
    Pubmed CrossRef
  65. Xu P, Bura R, Doty SL. 2015. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol. Bioeng.63:750-755.
    CrossRef
  66. Misawa N, Yamano S, Ikenaga H. 1991. Production of betacarotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl. Environ. Microbiol. 57:1847-1849.
  67. Kim JH, Kim SW, Nguyen DQA, Li H, Kim SB, Seo YG, et al.2009. Production of β-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures. Biotechnol. Bioprocess. Eng. 14:559-564.
    CrossRef
  68. Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, et al.2010. Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol. Progr. 23:599-605.
    Pubmed CrossRef
  69. Yoon SH, Lee SH, D as A , Ryu HK, Jang H J, K im JY, et al.2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J. Biotechnol. 140:218-226.
    Pubmed CrossRef
  70. Yang J, Guo L. 2014. Biosynthesis of β-carotene in engineered E.col i using the MEP and MVA pathways. Microb. Cell Fact. 13:160.
    CrossRef
  71. Zhao J, Li Q, Sun T, Zhu XN, Xu HT, Tang JL, et al. 2013. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab. Eng. 17:42-50.
    Pubmed CrossRef
  72. Stephanopoulos G. 1999. Metabolic fluxes and metabolic engineering. Metab. Eng. 1:1-11.
    Pubmed CrossRef
  73. Misawa N, Shimada H. 1998. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59:169-181.
    CrossRef
  74. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, Berg JAVD, et al. 2007. High-level production of betacarotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microb. 73:4342-4350.
    Pubmed CrossRef Pubmed Central
  75. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N. 1998. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl.Environ. Microbiol. 64:1226-1229.
  76. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N. 1998. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64:2676-2680.
  77. Araya-Garay JM, Feijoo-Siota L, Rosa-Dos-Santos F, VeigaCrespo P, Villa TG. 2012. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl. Microbiol. Biotechnol. 93:2483-2492.
    Pubmed CrossRef
  78. Abbott EP, Ianiri G, Castoria R, Idnurm A. 2013. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl. Microbiol. Biotechnol. 97:283-295.
    Pubmed CrossRef
  79. Liu Y, Koh CM, Sun L, Hlaing MM, Du M, Peng N, et al. 2013. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl. Microbiol. Biotechnol.97:719-729.
    Pubmed CrossRef
  80. Pi HW, A nandharaj M, Kao YY, L in Y J, Chang J J, L in WH. 2018. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci. Rep. 8:10850
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd