전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Ramnani P, Singh R, Gupta R. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51: 191196.
    Pubmed CrossRef
  2. Feng J. 1995. Development and utilization of feather meal protein feed. Feed Ind. 1995: 42-43.
  3. Gradisar H, Friedrich J, Križaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426.
    Pubmed PMC CrossRef
  4. Lopes FC, Silva LADE, Tichota DM, Daroit DJ, Velho RV, Pereira JQ, et al. 2011. Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res. 2011:487093.
    Pubmed PMC CrossRef
  5. Huang Y, Busk PK, Lange L. 2015. Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom. Biol. 4: 119.
  6. Ignatova Z, Gousterova A, Spassov G, Nedkov P. 1999. Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can. J. Microbiol. 45: 217-222.
    Pubmed CrossRef
  7. Jayalakshmi T, Krishnamoorthy P, Ramesh G, Sivamani P. 2010. Isolation and screening of a feather-degrading keratinolytic actinomycetes from Actinomyces sp. J. A m. S ci. 6: 45-48.
  8. Matikevičienė V, Grigiškis S, Levišauskas D, Sirvydytė K, Dižavičienė O, Masiliūnienė D, et al. 2013. Optimization of keratinase production by Actinomyces fradiae 119 and its applicaion in degradation of keratin containing wastes. Proceedings of the 8th International Scientific and Practical Conference. Environment Technology Resources 1: 294-300.
  9. Williams CM, Richter C, Mackenzie J, Shih JC. 1990. Isolation, identification, and characterization of a featherdegrading bacterium. Appl. Environ. Microbiol. 56: 1509-1515.
    Pubmed PMC
  10. Joshi S G, T ejashwini M M, Rev ati N, Sridevi R, R oma D . 2007. Isolation, identification and characterization of a feather degrading bacterium. Int. J. Poultry Sci. 6: 689-693.
    CrossRef
  11. Sudhir MR. 2016. Isolation and identification of feather degrading bacteria from poultry farm soil and characterization of enzyme. PhD Thesis. Narsee Monjee Institute of Management Studies, India.
  12. Mazotto AM, Coelho RRR, Cedrola SML, De Lima MF, Couri S, De Souza EP, et al. 2011. Keratinous production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation. Enzyme Res. 2011: 1-7.
    Pubmed PMC CrossRef
  13. Prakash P, Jayalakshmi SK, Sreeramulu K. 2010. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 87:625-633.
    Pubmed CrossRef
  14. Qi Z. 2012. Research on keratin-degrading bacteria with high disulfide bond-reducing capacity. Master degree thesis. Chinese Academy of Agricultural Sciences, Beijing, China.
  15. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, et al. 2011. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11: 535-553.
    Pubmed CrossRef
  16. Vermeij P, Kertesz MA. 1999. Pathways of assimilative sulfur metabolism in Pseudomonas putida. J. Bacteriol. 181:5833-5837.
    Pubmed PMC
  17. Pillai P, Archana G. 2008. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl. Microbiol. Biotechnol. 78:643-650.
    Pubmed CrossRef
  18. Tiwary E, Gupta R. 2010. Subtilisin-γ-glutamyl transpeptidase:a novel combination as ungual enhancer for prospective topical application. J. Pharm. Sci. 99: 4866-4873.
    Pubmed CrossRef
  19. Liu Q, Zhang T, Song N, Li Q, Wang Z, Zhang X, et al. 2014. Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. Int. Biodeterior. Biodegradation 96: 26-32.
    CrossRef
  20. Wang J, Zhu S, Xu C. 2002. Biological Chemistry, 3rd Ed. Higher Education Press, Beijing, China.
  21. Kunert J, Stransky Z. 1988. Thiosulfate production from cystine by the keratinolytic prokaryote Streptomyces fradiae. Arch. Microbiol. 150: 600-601.
    CrossRef
  22. Suh HJ, Lee HK. 2001. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Protein Chem. 20: 165-169.
    Pubmed CrossRef
  23. Strauch KL, Miller CG. 1983. Isolation and characterization Salmonella typhimurium mutants lacking a tripeptidase (peptidase T). J. Bacteriol. 154: 763-771.
    Pubmed PMC
  24. Orlowski M, Meister A. 1970. The γ-glutamyl cycle: a possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 67: 1248-1255.
    Pubmed PMC CrossRef
  25. Sharma R, Gupta R. 2012. Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresour. Technol. 120: 314-317.
    CrossRef
  26. Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A. 1998. Crystal structure of Escherichia coli cystathionine-γsynthase at 1.5 Å resolution. EMBO J. 17: 6827-6838.
    Pubmed PMC CrossRef
  27. Wallsgrove RM, Lea PJ, Miflin BJ. 1983. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 71: 780-784.
    Pubmed PMC CrossRef
  28. Tu G, Sun Y. 1998. Biochemical mechanism of the degradation of keratin in Streptomyces. Acta Agric. Univ. Jiangxiensis 20: 164-169.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2018; 28(2): 314-322

Published online February 28, 2018 https://doi.org/10.4014/jmb.1708.08077

Copyright © The Korean Society for Microbiology and Biotechnology.

Biodegradation of Feather Waste Keratin by the Keratin-Degrading Strain Bacillus subtilis 8

Zhoufeng He 1, Rong Sun 1, Zizhong Tang 1, Tongliang Bu 1, Qi Wu 1, Chenlei Li 1 and Hui Chen 1*

College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China

Correspondence to:Hui  Chen
chen62hui@163.com

Received: September 21, 2017; Accepted: November 15, 2017

Abstract

Bacillus subtilis 8 is highly efficient at degrading feather keratin. We observed integrated feather degradation over the course of 48 h in basic culture medium while studying the entire process with scanning electron microscopy. Large amounts of ammonia, sulfite, and L-cysteic acid were detected in the fermented liquid. In addition, four enzymes (gammaglutamyltranspeptidase, peptidase T, serine protease, and cystathionine gamma-synthase) were identified that play an important role in this degradation pathway, all of which were verified with molecular cloning and prokaryotic expression. To the best of our knowledge, this report is the first to demonstrate that cystathionine gamma-synthase secreted by B. subtilis 8 is involved in the decomposition of feather keratin. This study provides new data characterizing the molecular mechanism of feather degradation by bacteria, as well as potential guidance for future industrial utilization of waste keratin.

Keywords: Bacillus subtilis, keratin, purification, degradation mechanism, prokaryotic expression

References

  1. Ramnani P, Singh R, Gupta R. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51: 191196.
    Pubmed CrossRef
  2. Feng J. 1995. Development and utilization of feather meal protein feed. Feed Ind. 1995: 42-43.
  3. Gradisar H, Friedrich J, Križaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426.
    Pubmed KoreaMed CrossRef
  4. Lopes FC, Silva LADE, Tichota DM, Daroit DJ, Velho RV, Pereira JQ, et al. 2011. Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res. 2011:487093.
    Pubmed KoreaMed CrossRef
  5. Huang Y, Busk PK, Lange L. 2015. Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom. Biol. 4: 119.
  6. Ignatova Z, Gousterova A, Spassov G, Nedkov P. 1999. Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can. J. Microbiol. 45: 217-222.
    Pubmed CrossRef
  7. Jayalakshmi T, Krishnamoorthy P, Ramesh G, Sivamani P. 2010. Isolation and screening of a feather-degrading keratinolytic actinomycetes from Actinomyces sp. J. A m. S ci. 6: 45-48.
  8. Matikevičienė V, Grigiškis S, Levišauskas D, Sirvydytė K, Dižavičienė O, Masiliūnienė D, et al. 2013. Optimization of keratinase production by Actinomyces fradiae 119 and its applicaion in degradation of keratin containing wastes. Proceedings of the 8th International Scientific and Practical Conference. Environment Technology Resources 1: 294-300.
  9. Williams CM, Richter C, Mackenzie J, Shih JC. 1990. Isolation, identification, and characterization of a featherdegrading bacterium. Appl. Environ. Microbiol. 56: 1509-1515.
    Pubmed KoreaMed
  10. Joshi S G, T ejashwini M M, Rev ati N, Sridevi R, R oma D . 2007. Isolation, identification and characterization of a feather degrading bacterium. Int. J. Poultry Sci. 6: 689-693.
    CrossRef
  11. Sudhir MR. 2016. Isolation and identification of feather degrading bacteria from poultry farm soil and characterization of enzyme. PhD Thesis. Narsee Monjee Institute of Management Studies, India.
  12. Mazotto AM, Coelho RRR, Cedrola SML, De Lima MF, Couri S, De Souza EP, et al. 2011. Keratinous production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation. Enzyme Res. 2011: 1-7.
    Pubmed KoreaMed CrossRef
  13. Prakash P, Jayalakshmi SK, Sreeramulu K. 2010. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 87:625-633.
    Pubmed CrossRef
  14. Qi Z. 2012. Research on keratin-degrading bacteria with high disulfide bond-reducing capacity. Master degree thesis. Chinese Academy of Agricultural Sciences, Beijing, China.
  15. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, et al. 2011. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11: 535-553.
    Pubmed CrossRef
  16. Vermeij P, Kertesz MA. 1999. Pathways of assimilative sulfur metabolism in Pseudomonas putida. J. Bacteriol. 181:5833-5837.
    Pubmed KoreaMed
  17. Pillai P, Archana G. 2008. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl. Microbiol. Biotechnol. 78:643-650.
    Pubmed CrossRef
  18. Tiwary E, Gupta R. 2010. Subtilisin-γ-glutamyl transpeptidase:a novel combination as ungual enhancer for prospective topical application. J. Pharm. Sci. 99: 4866-4873.
    Pubmed CrossRef
  19. Liu Q, Zhang T, Song N, Li Q, Wang Z, Zhang X, et al. 2014. Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. Int. Biodeterior. Biodegradation 96: 26-32.
    CrossRef
  20. Wang J, Zhu S, Xu C. 2002. Biological Chemistry, 3rd Ed. Higher Education Press, Beijing, China.
  21. Kunert J, Stransky Z. 1988. Thiosulfate production from cystine by the keratinolytic prokaryote Streptomyces fradiae. Arch. Microbiol. 150: 600-601.
    CrossRef
  22. Suh HJ, Lee HK. 2001. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Protein Chem. 20: 165-169.
    Pubmed CrossRef
  23. Strauch KL, Miller CG. 1983. Isolation and characterization Salmonella typhimurium mutants lacking a tripeptidase (peptidase T). J. Bacteriol. 154: 763-771.
    Pubmed KoreaMed
  24. Orlowski M, Meister A. 1970. The γ-glutamyl cycle: a possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 67: 1248-1255.
    Pubmed KoreaMed CrossRef
  25. Sharma R, Gupta R. 2012. Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresour. Technol. 120: 314-317.
    CrossRef
  26. Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A. 1998. Crystal structure of Escherichia coli cystathionine-γsynthase at 1.5 Å resolution. EMBO J. 17: 6827-6838.
    Pubmed KoreaMed CrossRef
  27. Wallsgrove RM, Lea PJ, Miflin BJ. 1983. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 71: 780-784.
    Pubmed KoreaMed CrossRef
  28. Tu G, Sun Y. 1998. Biochemical mechanism of the degradation of keratin in Streptomyces. Acta Agric. Univ. Jiangxiensis 20: 164-169.