Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2017 ; Vol.27-12: 2180~2189

AuthorHao Tan, Jie Tang, Xiaolin Li, Tianhai Liu, Renyun Miao, Zhongqian Huang, Yong Wang, Bingcheng Gan, Weihong Peng
Place of dutyNational-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China,Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu 610066, P.R. China
TitleBiochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna
PublicationInfo J. Microbiol. Biotechnol.2017 ; Vol.27-12
AbstractPsychrophilic phytases suitable for aquaculture are rare. In this study, a phytase of the histidine acid phosphatase (HAP) family was identified in Morchella importuna, a psychrophilic mushroom. The phytase showed 38% identity with Aspergillus niger PhyB, which was the closest hit. The M. importuna phytase was overexpressed in Pichia pastoris, purified, and characterized. The phytase had an optimum temperature at 25°C, which is the lowest among all the known phytases to our best knowledge. The optimum pH (6.5) is higher than most of the known HAP phytases, which is fit for the weak acidic condition in fish gut. At the optimum pH and temperature, MiPhyA showed the maximum activity level (2,384.6 ± 90.4 μmol·min-1·mg-1, suggesting that the enzyme possesses a higher activity level over many known phytases at low temperatures. The phytate-degrading efficacy was tested on three common feed materials (soybean meal/rapeseed meal/corn meal) and was compared with the well-known phytases of Escherichia coli and A. niger. When using the same amount of activity units, MiPhyA could yield at least 3× more inorganic phosphate than the two reference phytases. When using the same weight of protein, MiPhyA could yield at least 5× more inorganic phosphate than the other two. Since it could degrade phytate in feed materials efficiently under low temperature and weak acidic conditions, which are common for aquacultural application, MiPhyA might be a promising candidate as a feed additive enzyme.
Full-Text
Supplemental Data
Key_wordMorchella importuna, phytase, psychrophilic, optimum at weak acidic pH, phosphate yield from feed material
References
  1. Gulati HK, Chadha BS, Saini HS. 2007. Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol. Immunol. Hung. 54: 121-138.
    Pubmed CrossRef
  2. Borgi M, Boudebbouze S, Aghajari N, Szukala F, Pons N, Maguin E, et al. 2014. The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl. Microbiol. Biotechnol. 98: 5937-5947.
    Pubmed CrossRef
  3. Tan H, W u X, Xie L, H uang Z, G an B , Peng W . 2015. Cloning, overexpression, and characterization of a metagenomederived phytase with optimal activity at low pH. J. Microbiol. Biotechnol. 25: 930-935.
    Pubmed CrossRef
  4. Cao L, Wang W, Yang C, Yang Y, Diana J, Yakupitiyage A, et al. 2007. Application of microbial phytase in fish feed. Enzyme Microb. Technol. 40: 497-507.
    CrossRef
  5. Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. 2016. A novel phytase derived from an acidic peat-soil microbiome showing high stability under acidic plus pepsin conditions. J. Mol. Microbiol. Biotechnol. 26: 291-301.
    Pubmed CrossRef
  6. Ushasree MV, Shyam K, Vidya J, Pandey A. 2017. Microbial phytase: impact of advances in genetic engineering in revolutionizing its properties and applications. Bioresour. Technol. 245: 1790-1799.
    Pubmed CrossRef
  7. Tran TT, Mamo G, Mattiasson B, Hatti-Kaul R. 2010. A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 37: 279-287.
    Pubmed CrossRef
  8. Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. 2016. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl. Microbiol. Biotechnol. 100: 2225-2241.
    Pubmed CrossRef
  9. Lei X-G, Weaver JD, Mullaney EJ, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1: 283-309.
    Pubmed CrossRef
  10. Rebello S, Jose L, Sindhu R, Aneesh EM. 2017. Molecular advancements in the development of thermostable phytases. Appl. Microbiol. Biotechnol. 101: 2677-2689.
    Pubmed CrossRef
  11. Huang H, Luo H, Wang Y, Fu D, Shao N, Yang P, et al. 2009. Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J. Microbiol. Biotechnol. 19: 1085-1091.
    Pubmed CrossRef
  12. Huang H, Shao N, Wang Y, L u o H, Y ang P, Zhou Z, et al. 2009. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl. Microbiol. Biotechnol. 83: 249-259.
    Pubmed CrossRef
  13. Yu P, Wang X-T, Liu J-W. 2015. Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. J. Basic Microbiol. 55: 1029-1039.
    Pubmed CrossRef
  14. Peng W, Tang J, He X, Chen Y, Tan H. 2016. Status analysis of morel artificial cultivation in Sichuan. Edible Med. Mushrooms 24: 145-150.
  15. Schmidt EL. 1983. Spore germination of and carbohydrate colonization by Morchella esculenta at different soil temperatures. Mycologia 75: 870-875.
    CrossRef
  16. Xu H, Sun L-P, Shi Y-Z, Wu Y-H, Zhang B, Zhao D-Q. 2008. Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620. Biochem. Eng. J. 39: 66-73.
    CrossRef
  17. Goldway M, Amir R, Goldberg D, Hadar Y, Levanon D. 2000. Morchella conica exhibiting a long fruiting season. Mycol. Res. 104: 1000-1004.
    CrossRef
  18. Hong DK, Jang S-H, Lee C. 2017. Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an Arctic bacterium Sphingomonas glacialis PAMC 26605. J. Mol. Catal. B Enzyme. 133: S337-S345.
    CrossRef
  19. Feller G, Gerday C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1: 200-208.
    Pubmed CrossRef
  20. Feller G, Gerday C. 1997. Psychrophilic enzymes: molecular basis of cold adaptation. Cell. Mol. Life Sci. 53: 830-841.
    Pubmed CrossRef
  21. Parvizpour S, Razmara J, Ramli ANM, Md Illias R, Shamsir MS. 2014. Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12. J. Comput. Aided Mol. Des. 28: 685-698.
    Pubmed CrossRef
  22. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.
    Pubmed CrossRef
  23. Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson AD, et al. 2013. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 49: 661-672.
    CrossRef
  24. Letunic I, Bork P. 2006. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127-128.
    Pubmed CrossRef
  25. Fu D, Li Z, Huang H, Yuan T, Shi P, Luo H, et al. 2011. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Appl. Microbiol. Biotechnol. 90: 1295-1302.
    Pubmed CrossRef
  26. Hu ang H, L u o H, W ang Y, Fu D, Shao N , Wang G , et al. 2008. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl. Microbiol. Biotechnol. 80: 417-426.
  27. Tan H, Miao R, Liu T, Cao X, Wu X, Xie L, et al. 2016. Enhancing thermal resistance of a novel Acidobacteriaderived phytase by engineering of disulfide bridges. J. Microbiol. Biotechnol. 26: 1717-1722.
    Pubmed CrossRef
  28. Bradford MM. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  29. Lim D, Golovan S, Forsberg CW, Jia Z. 2000. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108-113.
    Pubmed CrossRef
  30. Uchida H, Arakida S, Sakamoto T, Kawasaki H. 2006. Expression of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD−. J. Biosci. Bioeng. 102: 564-567.
    Pubmed CrossRef
  31. Heinonen JK, Lahti RJ. 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 113: 313-317.
    CrossRef
  32. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, L iang AH. 2012. Phytases: crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol. 112: 1-14.
    Pubmed CrossRef
  33. Lassen SF, Breinholt J , Ostergaard P R, B ru gger R , Bischoff A, Wyss M, et al. 2001. Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl. Environ. Microbiol. 67: 4701-4707.
    Pubmed CrossRef Pubmed Central
  34. Ushasree M, Vidya J, Pandey A. 2014. Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression. Biotechnol. Lett. 36: 85-91.
    Pubmed CrossRef
  35. Pasamontes L, Haiker M, Wyss M, Tessier M, van Loon AP. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696-1700.
    Pubmed Pubmed Central
  36. Berka RM, Rey MW, Brown KM, Byun T, Klotz AV. 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64: 4423-4427.
    Pubmed Pubmed Central
  37. Tan H, Mooij MJ, Barret M, Hegarty PM, Harington C, Dobson AD, et al. 2014. Identification of novel phytase genes from an agricultural soil-derived metagenome. J. Microbiol. Biotechnol. 24: 113-118.
    Pubmed CrossRef
  38. Niu C, Yang P, Luo H, Huang H, Wang Y, Yao B. 2017. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency. Sci. Rep. 7: e42133.
    Pubmed CrossRef Pubmed Central
  39. Shao N, Huang H, Meng K, Luo H, Wang Y, Yang P, et al. 2008. Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J. Microbiol. Biotechnol. 18: 1221-1226.
    Pubmed
  40. Fu D, Huang H, Luo H, Wang Y, Yang P, Meng K, et al. 2008. A highly pH-stable phytase from Yersinia kristeensenii:cloning, expression, and characterization. Enzyme Microb. Technol. 42: 499-505.
    CrossRef
  41. Shi P, Huang H, Wang Y, Luo H, Wu B, Meng K, et al. 2008. A novel phytase gene appA from Buttiauxella sp. GC21 isolated from grass carp intestine. Aquaculture 275: 70-75.
    CrossRef
  42. Hu ang H, Luo H, Yang P, Meng K, Wang Y, Yu an T , et al. 2006. A novel phytase with preferable characteristics from Yersinia intermedia. Biochem. Biophys. Res. Commun. 350: 884-889.
  43. Vats P, Banerjee UC. 2005. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phospho hydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32: 141-147.
    Pubmed CrossRef
  44. Singh B, Satyanarayana T. 2009. Characterization of a HAPphytase from a thermophilic mould Sporotrichum thermophile. Bioresour. Technol. 100: 2046-2051.
    Pubmed CrossRef
  45. Kim H-W, Kim Y-O, Lee J-H, Kim K-K, Kim Y-J. 2003. Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol. Lett. 25: 1231-1234.
    Pubmed CrossRef
  46. Weaver JD, Ullah AHJ, Sethumadhavan K, Mullaney EJ, Lei XG. 2009. Impact of assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases. J. Agric. Food Chem. 57: 5315-5320.
    Pubmed CrossRef
  47. Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K. 2012. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. 96: 335-364.
    Pubmed CrossRef
  48. Nwanna LC, Eisenreich R, Schwarz FJ. 2007. Effect of wetincubation of dietary plant feedstuffs with phytases on growth and mineral digestibility by common carp (Cyprinus carpio L). Aquaculture 271: 461-468.
    CrossRef
  49. González de la Huebra MJ. 2005. Evaluation report on the analytical methods submitted in connection with the application for authorisation as a feed additive according to Regulation (EC) No 1831/2003: Optiphos?. European Union Reference Laboratory for Feed Additives (EURL-FA), JRC Geel, Belgium.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd