Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2017 ; Vol.27-10: 1867~1876

AuthorXue-Mei Jin, Yong-Keun Chang, Jae Hag Lee, Soon-Kwang Hong
Place of dutyDepartment of Biological Science and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
TitleEffects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24
PublicationInfo J. Microbiol. Biotechnol.2017 ; Vol.27-10
AbstractMost of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.
Full-Text
Key_wordGlucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, actinorhodin, undecylprodigiosin, Streptomyces lividans, pentose phosphate pathway
References
  1. Horinouchi S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7: d2045-d2057.
    Pubmed
  2. Craney A, Ahmed S, Nodwell J. 2013. Towards a new science of secondary metabolism. J. Antibiot. (Tokyo) 66: 387-400.
    Pubmed CrossRef
  3. Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ. 2002. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl. Environ. Microbiol. 68: 4731-4739.
    Pubmed CrossRef Pubmed Central
  4. Poulsen BR, Nøhr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, et al. 2005. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J. 272: 1313-1325.
    Pubmed CrossRef
  5. Corre C, Challis GL. 2005. Evidence for the unusual condensation of a diketide with a pentulose in the methylenomycin biosynthetic pathway of Streptomyces coelicolor A3(2). Chembiochem 6: 2166-2170.
    Pubmed CrossRef
  6. Huppe HC, Farr TJ, Turpin DH. 1994. Coordination of chloroplastic metabolism in N-limited Chlamydomonas reinhardtii by redox modulation (II. Redox modulation activates the oxidative pentose phosphate pathway during photosynthetic nitrate assimilation). Plant Physiol. 105: 1043-1048.
    Pubmed CrossRef Pubmed Central
  7. Hood DW, Heidstra R, Swoboda UK, Hodgson DA. 1992. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism — a review. Gene 115: 5-12.
    CrossRef
  8. Zhang CS, Stratmann A, Block O, Brückner R, Podeschwa M, Altenbach HJ, et al. 2002. Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-OPhosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. J. Biol. Chem. 277: 22853-22862.
    Pubmed CrossRef
  9. Minagawa K, Zhang Y, Ito T, Bai L, Deng Z, Mahmud T. 2007. ValC, a new type of C7-cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem 8: 632-641.
    Pubmed CrossRef Pubmed Central
  10. Choi WS, Wu X, Choeng YH, Mahmud T, Jeong BC, Lee SH, et al. 2008. Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Appl. Microbiol. Biotechnol. 80: 637-645.
    Pubmed CrossRef
  11. Miclet E, Stoven V, Michels PA, Opperdoes FR, Lallemand JY, Duffieux F. 2001. NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J. Biol. Chem. 276: 34840-34846.
    Pubmed CrossRef
  12. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.
    Pubmed CrossRef
  13. Sundaram S, Karakaya H, Scanlan DJ, Mann NH. 1998. Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. Microbiology 144: 1549-1556.
    Pubmed CrossRef
  14. Moritz B, Striegel K, De Graaf AA, Sahm H. 2000. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267: 3442-3452.
    Pubmed CrossRef
  15. Taguchi T, Yabe M, Odaki H, Shinozaki M, Metsä-Ketelä M, Arai T, et al. 2013. Biosynthetic conclusions from the functional dissection of oxygenases for biosynthesis of actinorhodin and related Streptomyces antibiotics. Chem. Biol. 20: 510-520.
    Pubmed CrossRef
  16. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
    Pubmed Central
  17. Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881.
    Pubmed CrossRef Pubmed Central
  18. Green MR, Sambrook J. 2012. Molecular Cloning. A Laboratory Manual, 4th Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  19. Wamelink MM, Struys EA, Huck JH, Roos B, van der Knaap MS, Jakobs C, et al. 2005. Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LCMS/MS: application to two new inherited defects of metabolism. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 823: 18-25.
    Pubmed CrossRef
  20. Bystrykh LV, Fernandez-Moreno MA, Herrema JK, Malpartida FM, Hopwood DA, Dijkhuizen L. 1996. Production of actinorhodin-related “blue pigments” by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244.
    Pubmed CrossRef Pubmed Central
  21. Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6: 2797-2804.
    Pubmed CrossRef
  22. Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ. 2002. Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab. Eng. 4: 138-150.
    Pubmed CrossRef
  23. Coze F, Gilard F, Tcherkez G, Virolle MJ, Guyonvarch A. 2013. Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLoS One 8: e84151.
    Pubmed CrossRef Pubmed Central
  24. Kim HB, Smith CP, Micklefield J, Mavituna F. 2004. Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab. Eng. 6: 313-325.
    Pubmed CrossRef
  25. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, et al. 2008. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J. Biol. Chem. 283: 25186-25199.
    Pubmed CrossRef
  26. Ryu YG, Butler MJ, Chater KF, Lee KJ. 2006. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl. Environ. Microbiol. 72: 7132-7139.
    Pubmed CrossRef Pubmed Central
  27. Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, et al. 1990. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes: clarification of actinorhodin gene functions. J. Bacteriol. 172: 4816-4826.
    Pubmed CrossRef Pubmed Central
  28. Beltran- Alvarez P, C ox R J, C rosby J, S impson T J. 2 007. Dissecting the component reactions catalyzed by the actinorhodin minimal polyketide synthase. Biochemistry 46: 14672-14681.
    Pubmed CrossRef
  29. Williamson NR, Fineran PC, Leeper FJ, Salmond GP. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4: 887-899.
    Pubmed CrossRef
  30. Trutko S, Akimenko V. 1989. The role of prodigiosin biosynthesis in the regulation of oxidative metabolism of the producer Serratia marcescens. Mikrobiologiia 58: 723-729.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd