Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2017 ; Vol.27-12: 2211~2220

AuthorYoungbeom Ahn, Jeong Myeong Kim, Yong-Jin Lee, John J. LiPuma, David Hussong, Bernard S. Marasa, Carl E. Cerniglia
Place of dutyDivision of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
TitleEffects of Extended Storage of Chlorhexidine Gluconate and Benzalkonium Chloride Solutions on the Viability of Burkholderia cenocepacia
PublicationInfo J. Microbiol. Biotechnol.2017 ; Vol.27-12
AbstractChlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) formulations are frequently used as antiseptics in healthcare and consumer products. Burkholderia cepacia complex (BCC) contamination of pharmaceutical products could be due to the use of contaminated water in the manufacturing process, over-diluted antiseptic solutions in the product, and the use of outdated products, which in turn reduces the antimicrobial activity of CHX and BZK. To establish a “safe use” period following opening containers of CHX and BZK, we measured the antimicrobial effects of CHX (2-10 μg/ml) and BZK (10-50 μg/ml) at sublethal concentrations on six strains of Burkholderia cenocepacia using chemical and microbiological assays. CHX (2, 4, and 10 μg/ml) and BZK (10, 20, and 50 μg/ml) stored for 42 days at 23°C showed almost the same concentration and toxicity compared with freshly prepared CHX and BZK on B. cenocepacia strains. When 5 μg/ml CHX and 20 μg/ml BZK were spiked to six B. cenocepacia strains with different inoculum sizes (100 -105 CFU/ml), their toxic effects were not changed for 28 days. B. cenocepacia strains in diluted CHX and BZK were detectable at concentrations up to 102 CFU/ml after incubation for 28 days at 23°C. Although abiotic and biotic changes in the toxicity of both antiseptics were not observed, our results indicate that B. cenocepacia strains could remain viable in CHX and BZK for 28 days, which in turn, indicates the importance of control measures to monitor BCC contamination in pharmaceutical products.
Full-Text
Key_wordBactericidal effects, antiseptic, chlorhexidine gluconate, benzalkonium chloride, Burkholderia cenocepacia
References
  1. Gnanadhas DP, Marathe SA, Chakravortty D. 2013. Biocides- resistance, cross-resistance mechanisms and assessment. Expert Opin. Investig. Drugs 22: 191-206.
    Pubmed CrossRef
  2. Gilbert P, Moore LE. 2005. Cationic antiseptics: diversity of action under a common epithet. J. Appl. Microbiol. 99: 703-715.
    Pubmed CrossRef
  3. Weber DJ, Rutala WA, Sickbert-Bennett EE. 2007. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob. Agents Chemother. 51: 4217-4224.
    Pubmed CrossRef Pubmed Central
  4. D’Arcy PF, Taylor EP. 1962. Quaternary ammonium compounds in medicinal chemistry. I. J. Pharm. Pharmacol. 14: 129-146.
    Pubmed CrossRef
  5. D’Arcy PF, Taylor EP. 1962. Quaternary ammonium compounds in medicinal chemistry. II. J. Pharm. Pharmacol. 14: 193-216.
    Pubmed CrossRef
  6. Dabbah R, Chang WW, Cooper MS. 1996. The use of preservatives in compendial articles. Pharmacopeial Forum 22: 2696-2704.
  7. Brambilla E, Cagetti MG, Fadini L, Pariset P, Strohmenger L, Twetman S. 2004. Chlorhexidine concentration in saliva after topical treatment with an antibacterial dental varnish. Am. J. Dent. 17: 196-198.
    Pubmed
  8. Russell AD. 2003. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 3: 794-803.
    CrossRef
  9. Tandukar M, Oh S, Tezel U, Konstantinidis KT, Pavlostathis SG. 2013. Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environ. Sci. Technol. 47: 9730-9738.
    Pubmed CrossRef
  10. To MS, Favrin S, Romanova N, Griffiths MW. 2002. Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl. Environ. Microbiol. 68: 5258-5264.
    Pubmed CrossRef Pubmed Central
  11. Mahenthiralingam E, Urban TA, Goldberg JB. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3: 144-156.
    Pubmed CrossRef
  12. Govan JRW, Hughes JE, Vandamme P. 1996. Burkholderia cepacia: medical, taxonomic and ecological issues. J. Med. Microbiol. 45: 395-407.
    Pubmed CrossRef
  13. Mahenthiralingam E, Vandamme P. 2005. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron. Respir. Dis. 2: 209-217.
    Pubmed CrossRef
  14. Dixon RE, Kaslow RA, Mackel DC, Fulkerson CC, Mallison GF. 1976. Aqueous quaternary ammonium antiseptics and disinfectants - use and misuse. J. Am. Med. Assoc. 236: 2415-2417.
    Pubmed CrossRef
  15. FDA U. 2013. Enforcement report - week of March 20, 2013. Available from https://www.accessdata.fda.gov/scripts/ires/index.cfm. Accessed 9 May 2017.
  16. Fox JG, Beaucage CM, Folta CA, Thornton GW. 1981. Nosocomial transmission of Serratia marcescens in a veterinary hospital due to contamination by benzalkonium chloride. J. Clin. Microbiol. 14: 157-160.
    Pubmed Pubmed Central
  17. Guinness M, Levey J. 1976. Contamination of aqueous dilutions of resiguard disinfectant with Pseudomonas. Med. J. Aust. 2: 392-392.
    Pubmed
  18. Kaslow RA, Macel DC, Mallison GF. 1976. Nosocomial pseudobacteremia. Positive blood cultures due to contaminated benzalkonium antiseptic. J. Am. Med. Assoc. 236: 2407-2409.
    Pubmed CrossRef
  19. Lee JC, Fialkow PJ. 1961. Benzalkonium chloride - source of hospital infection with gram-negative bacteria. J. Am. Med. Assoc. 177: 708-710.
    Pubmed CrossRef
  20. Malizia WF, Gangarosa EJ, Goley AF. 1960. Benzalkonium chloride as a source of infection. N. Engl. J. Med. 263: 800-802.
    Pubmed CrossRef
  21. Nakashima AK, Mccarthy MA, Martone WJ, Anderson RL. 1987. Epidemic septic arthritis caused by Serratia marcescens and associated with a benzalkonium chloride antiseptic. J. Clin. Microbiol. 25: 1014-1018.
    Pubmed Pubmed Central
  22. Nasser RM, Rahi AC, Haddad MF, Daoud Z, Irani-Hakime N, Almawi WY. 2004. Outbreak of Burkholderia cepacia bacteremia traced to contaminated hospital water used for dilution of an alcohol skin antiseptic. Infect. Control Hosp. Epidemiol. 25:231-239.
    Pubmed CrossRef
  23. Plotkin SA, Austrian R. 1958. Bacteremia caused by Pseudomonas sp. following the use of materials stored in solutions of a cationic surface active agent. Am. J. Med. Sci. 235: 621-627.
    Pubmed CrossRef
  24. Sautter RL, Mattman LH, Legaspi RC. 1984. Serratia marcescens meningitis associated with a contaminated benzalkonium chloride solution. Infect. Control Hosp. Epidemiol. 5: 223-225.
    CrossRef
  25. Sobel JD, Hashman N, Reinherz G, Merzbach D. 1982. Nosocomial Pseudomonas cepacia infection associated with chlorhexidine contamination. Am. J. Med. 73: 183-186.
    CrossRef
  26. Tiwari TSP, Ray B, Jost KC, Rathod MK, Zhang YS, BrownElliott BA, et al. 2003. Forty years of disinfectant failure:outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin. Infect. Dis. 36: 954-962.
    Pubmed CrossRef
  27. CDC. 2017. Multistate outbreak of Burkholderia cepacia bloodstream infections associated with contaminated prefilled saline flush syringes. Available from https://www.cdc.gov/hai/outbreaks/b-cepacia-saline-flush/index.html. Accessed 9 May 2017.
  28. FDA. 2016. FDA updates on multistate outbreak of Burkholderia cepacia infections. Available from https://www.fda.gov/drugs/drugsafety/ucm511527.htm. Accessed 9 May 2017.
  29. LiPuma JJ, Spilker T, Gill LH, Campbell PW 3rd, Liu L, Mahenthiralingam E. 2001. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 164: 92-96.
    Pubmed CrossRef
  30. Reik R, Spilker T, Lipuma JJ. 2005. Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J. Clin. Microbiol. 43: 2926-2928.
    Pubmed CrossRef Pubmed Central
  31. Shehabi AA, Abu-al-Soud W, Mahafzah A, Khuri-Bulos N, Khader IA, Ouis IS, et al. 2004. Investigation of Burkholderia cepacia nosocomial outbreak with high fatality in patients suffering from diseases other than cystic fibrosis. Scand. J. Infect. Dis. 36: 174-178.
    Pubmed CrossRef
  32. Kim JM, Ahn Y, LiPuma JJ, Hussong D, Cerniglia CE. 2015. Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride. J. Ind. Microbiol. Biotechnol. 42: 905-913.
    Pubmed CrossRef
  33. Rose H, Baldwin A, Dowson CG, Mahenthiralingam E. 2009. Biocide susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 63: 502-510.
    Pubmed CrossRef Pubmed Central
  34. Vigeant P, Loo VG, Bertrand C, Dixon C, Hollis R, Pfaller MA, et al. 1998. An outbreak of Serratia marcescens infections related to contaminated chlorhexidine. Infect. Control Hosp. Epidemiol. 19: 791-794.
    Pubmed CrossRef
  35. Ahn Y, Kim JM, Ahn H, Lee YJ, LiPuma JJ, Hussong D, et al. 2014. Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water. J. Ind. Microbiol. Biotechnol. 41: 1109-1118.
    Pubmed CrossRef
  36. Ahn Y, Kim JM, Kweon O, Kim SJ, Jones RC, Woodling K, et al. 2016. Intrinsic resistance of Burkholderia cepacia complex to benzalkonium chloride. MBio. 7: e01716-16.
    Pubmed CrossRef Pubmed Central
  37. Hajaya MG, Pavlostathis SG. 2012. Fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Bioresour. Technol. 118: 73-81.
    Pubmed CrossRef
  38. Hazan R, Que Y-A, Maura D, Rahme LG. 2012. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 12: 259.
    Pubmed CrossRef Pubmed Central
  39. Cassidy MB, Leung KT, Lee H, Trevors JT. 2000. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J. Microbiol. Methods 40: 135-145.
    CrossRef
  40. FDA. 2015. Expiration dating and stability testing for human drug products. Available from https://www.fda.gov/ICECI/Inspections/InspectionGuides/InspectionTechnicalGuides/ucm072919.htm. Accessed 17 May 2017.
  41. Dolby J, Gunnarsson B, Kronberg L, Wikner H. 1972. Stability of chlorhexidine when autoclaving. Pharm. Acta Helv. 47: 615-620.
    Pubmed
  42. Franck M, Schmidt PC. 1993. Degradation of chlorhexidine in antacid suspensions - a novel approach to describe degradation kinetics. Eur. J. Pharm. Biopharm. 39: 19-24.
  43. Zong Z, Kirsch LE. 2012. Studies on the instability of chlorhexidine, part I: kinetics and mechanisms. J. Pharm. Sci. 101: 2417-2427.
    Pubmed CrossRef
  44. Das R, Sarkar S, Chakraborty S, Choi H, Bhattacharjee C. 2014. Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles. Ind. Eng. Chem. Res. 53: 3012-3020.
    CrossRef
  45. Rucker RR, Johnson HE, Ordal EJ. 1949. An investigation of the bactericidal action and fish toxicity of two homologous series of quaternary ammonium compounds. J. Bacteriol. 57: 225-234.
    Pubmed Pubmed Central
  46. Jovovic M, Kostic N, Jancic-Stojanovic B, Malenovic A. 2012. Investigation of tropicamide and benzalkonium chloride stability using liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 35: 231-239.
    CrossRef
  47. Parhizkari G, Delker G, Miller RB, Chen C. 1995. A stability indicating HPLC method for the determination of benzalkonium chloride in 0.5 percent tramadol ophthalmic solution. Chromatographia 40: 155-158.
    CrossRef
  48. Parhizkari G, Miller RB, Chen C. 1995. A stability indicating HPLC method for the determination of benzalkonium chloride in phenylephrine HCl 10 percent ophthalmic solution. J. Liq. Chromatogr. 18: 553-563.
    CrossRef
  49. Cheriaa J, Rouabhia M, Maatallah M, Bakhrouf A. 2012. Phenotypic stress response of Pseudomonas aeruginosa following culture in water microcosms. J. Water Health 10: 130-139.
    Pubmed CrossRef
  50. Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99: 17025-17030.
    Pubmed CrossRef Pubmed Central
  51. Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A. 2001. Responses of gramnegative bacteria to certain environmental stressors. Curr. Opin. Microbiol. 4: 166-171.
    CrossRef
  52. Chen HY, Yuan M, Livermore DM. 1995. Mechanisms of resistance to beta-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J. Med. Microbiol. 43: 300-309.
    Pubmed CrossRef
  53. Jung JY, Ahn Y, Kweon O, LiPuma JJ, Hussong D, Marasa BS, Cerniglia CE. 2017. Improved high-quality draft genome sequence and annotation of Burkholderia contaminans LMG 23361T. Genome Announc. 5: e00245-e00217.
    Pubmed CrossRef Pubmed Central
  54. Ong HS, Mohamed R, Firdaus-Raih M. 2012. Comparative genome sequence analysis reveals the extent of diversity and conservation for glycan-associated proteins in Burkholderia spp. Comp. Funct. Genomics 2012: 752867.
    Pubmed CrossRef Pubmed Central
  55. Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P, Manina G, et al. 2006. Efflux pump genes of the resistance nodulation division family in Burkholderia cenocepacia genome. BMC Microbiol. 6: 66.
    Pubmed CrossRef Pubmed Central
  56. Kido Y, Kodama H, Uraki F, Uyeda M, Tsuruoka M, Shibata M. 1988. Microbial degradation of disinfectants. II. Complete degradation of chlorhexidine. Eisei Kagaku 34: 97-101.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd