Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2017 ; Vol.27-11: 1932~1941

AuthorSukyung Kim, Hoonhee Seo, Hafij Al Mahmud, Md Imtiazul Islam, Yong-Sik Kim, Jiwon Lyu, Kung-Woo Nam, Byung-Eui Lee, Kee-In Lee, Ho-Yeon Song
Place of dutyDepartment of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
TitleIn Vitro Effect of DFC-2 on Mycolic Acid Biosynthesis in Mycobacterium tuberculosis
PublicationInfo J. Microbiol. Biotechnol.2017 ; Vol.27-11
AbstractDFC-2, a methyl 5-[2-(dimethylamino)ethoxy]-7,12-dioxo-7,12-dihydrodinaphtho[1,2-b:2’,3’- d]furan-6-carboxylate, is reported to have antitubercular effects against Mycobacterium tuberculosis. At concentrations ranging from 0.19 to 0.39 μg/ml, DFC-2 inhibited both drugsusceptible and –resistant strains of M. tuberculosis. Microarray analyses were employed to gain insights into the molecular mechanisms of DFC-2’s action in M. tuberculosis. The most affected functional gene category was “lipid biosynthesis,” which is involved in mycolic acid synthesis. The decrease in transcription of genes related to mycolic acid synthesis was confirmed by RT-PCR. Furthermore, we found that DFC-2 triggered a reduction in mycolic acid levels, showing a similar pattern to that of mycolic acid synthesis inhibitor isoniazid. These results may explain how this compound kills mycobacteria efficiently by inhibiting mycolic acid synthesis.
Full-Text
Supplemental Data
Key_wordDFC-2, mycolic acid, M. tuberculosis
References
  1. World Health Organization. 2016. Global Tuberculosis Report 2016. WHO, Geneva, Switzerland.
  2. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. 2006. OPC-67683, a nitrodihydroimidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3: e466.
    Pubmed CrossRef Pubmed Central
  3. Jang WS, Choi YS, Kim S, Jyoti MA, Seo H, Han J , et al. 2017. Naphthofuroquinone derivatives show strong antimycobacterial activities against drug-resistant mycobacteria. J. Chemother. 29: 338-343.
    Pubmed CrossRef
  4. Yajko DM, Madej JJ, Lancaster MV, Sanders CA, Cawthon VL, Gee B, et al. 1995. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J. Clin. Microbiol. 33: 2324-2327.
    Pubmed Pubmed Central
  5. Katawera V, Siedner M, Boum Y 2nd. 2014. Evaluation of the modified colorimetric resazurin microtiter plate-based antibacterial assay for rapid and reliable tuberculosis drug susceptibility testing. BMC Microbiol. 14: 259.
    Pubmed CrossRef Pubmed Central
  6. Palomino J C, Martin A, Camacho M , Guerra H, Swings J, Portaels F. 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46: 2720-2722.
    Pubmed CrossRef Pubmed Central
  7. Chitwood LA. 1969. Tube dilution antimicrobial susceptibility testing: efficacy of a microtechnique applicable to diagnostic laboratories. Appl. Microbiol. 17: 707-709.
    Pubmed Pubmed Central
  8. Turck M, Lindemeyer RI, Petersdorf RG. 1963. Comparison of single-disc and tube-dilution techniques in determining antibiotic sensitivities of gram-negative pathogens. Ann. Int. Med. 58: 56-65.
    Pubmed CrossRef
  9. Hoffner S, Jimenez-Misas C, Lundin A. 1999. Improved extraction and assay of mycobacterial ATP for rapid drug susceptibility testing. Luminescence 14: 255-261.
    CrossRef
  10. Beckers B, Lang HRM, Schimke D, Lammers A. 1985. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria. Eur. J. Clin. Microbiol. 4: 556-561.
    Pubmed CrossRef
  11. Nilsson LE, Hoffner SE, Ansehn S. 1988. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP. Antimicrob. Agents Chemother. 32: 1208-1212.
    Pubmed CrossRef Pubmed Central
  12. Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, et al. 2013. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med. 19: 1157-1160.
    Pubmed CrossRef
  13. Rao SP, Alonso S, Rand L, Dick T, Pethe K. 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 105: 11945-11950.
    Pubmed CrossRef Pubmed Central
  14. Shi L, Sohaskey CD, Pfeiffer C, Datta P, Parks M, McFadden J, et al. 2010. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol. Microbiol. 78: 1199-1215.
    Pubmed CrossRef Pubmed Central
  15. Jyoti MA, Zerin T, Kim TH, Hwang TS, Jang WS, Nam KW, et al. 2015. In vitro effect of ursolic acid on the inhibition of Mycobacterium tuberculosis and its cell wall mycolic acid. Pulm. Pharmacol. Ther. 33: 17-24.
    Pubmed CrossRef
  16. Ryndak MB, Singh KK, Peng Z, Laal S. 2015. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells. PLoS One 10: e0123745.
    Pubmed CrossRef Pubmed Central
  17. Shi L , Jung YJ, Tyagi S , Gennaro M L, North R J. 2 003. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl. Acad. Sci. USA 100: 241-246.
    Pubmed CrossRef Pubmed Central
  18. Jang WS, Kim S, Podder B, Jyoti MA, Nam KW, Lee BE, et al. 2015. Anti-mycobacterial activity of tamoxifen against drug-resistant and intra-macrophage Mycobacterium tuberculosis. J. Microbiol. Biotechnol. 25: 946-950.
    Pubmed CrossRef
  19. Russo G, Zegar C, Giordano A. 2003. Advantages and limitations of microarray technology in human cancer. Oncogene 22: 6497-6507.
    Pubmed CrossRef
  20. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544.
    Pubmed CrossRef
  21. Waddell S J, Stabler RA, Laing K , Kremer L, Reynolds RC, Besra GS. 2004. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb.) 84: 263-274.
    Pubmed CrossRef
  22. Tavazoie S, Hughes JD, Campbell MJ, Cho R J, Church GM. 1999. Systematic determination of genetic network architecture. Nat. Genet. 22: 281-285.
    Pubmed CrossRef
  23. Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, et al. 2002. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc. Natl. Acad. Sci. USA 99: 972-977.
    Pubmed CrossRef Pubmed Central
  24. Pawelczyk J, Kremer L. 2014. The molecular genetics of mycolic acid biosynthesis. Microbiol. Spectr. 2: MGM2-0003-2013.
  25. Parrish NM, Ko CG, Hughes MA, Townsend CA, Dick JD. 2004. Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J. Antimicrob. Chemother. 54: 722-729.
    Pubmed CrossRef
  26. Takayama K, Wang L, David HL. 1972. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2: 29-35.
    Pubmed CrossRef Pubmed Central
  27. Parumasivam T, Kumar HSN, Mohamad S, Ibrahim P, Sadikun A. 2013. Effects of a lipophilic isoniazid derivative on the growth and cellular morphogenesis of Mycobacterium tuberculosis H37Rv. Int. J. Pharm. Pharm. Sci. 5: 43-50.
  28. Barkan D, Liu Z , Sacchettini J C, Glickman M S. 2 009. Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. Chem. Biol. 16: 499-509.
    Pubmed CrossRef Pubmed Central
  29. Bhatt A , Molle V , Besra G S, Jacobs WR Jr, Kremer L. 2 007. The Mycobacterium tuberculosis FAS-II condensing enzymes:their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol. 64: 1442-1454.
    Pubmed CrossRef
  30. Salzman V, Mondino S, Sala C, Cole ST, Gago G, Gramajo H. 2010. Transcriptional regulation of lipid homeostasis in mycobacteria. Mol. Microbiol. 78: 64-77.
    CrossRef
  31. Fisher MA, Plikaytis BB, Shinnick TM. 2002. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J. Bacteriol. 184: 4025-4032.
    Pubmed CrossRef Pubmed Central
  32. Betts JC, McLaren A, Lennon MG, Kelly FM, Lukey PT, Blakemore SJ, et al. 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosantreated Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47: 2903-2913.
    Pubmed CrossRef Pubmed Central
  33. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227-230.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd