Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2017 ; Vol.27-7: 1316~1323

AuthorHyung-Seok Oh, Chang Soo Lee, Ankita Srivastava, Hee-Mock Oh, Chi-Yong Ahn
Place of dutyCell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
TitleEffects of Environmental Factors on Cyanobacterial Production of Odorous Compounds: Geosmin and 2-Methylisoborneol
PublicationInfo J. Microbiol. Biotechnol.2017 ; Vol.27-7
AbstractGeosmin and 2-methylisoborneol (2-MIB), responsible for earthy or musty smell, are a major concern for safe drinking water supplies. This study investigated the effects of environmental factors on odorous compound production and cell growth in cyanobacterial strains. Anabaena sp. FACHB-1384, a 2-MIB producer, was sensitive to low temperature (<20oC). However, geosmin producers, Anabaena sp. Chusori and Anabaena sp. NIER, were sensitive to high light intensity (>100 μmol/m2/sec), but not to low temperature. Geosmin concentrations increased under higher nitrate concentrations, being linearly proportional to cell density. A P-limited chemostat showed that P-stress decreased the geosmin productivity and extracellular geosmin amount per cell in Anabaena sp. NIER. However, only 2-MIB productivity was reduced in Planktothrix sp. FACHB-1374 under P-limitation. The extracellular 2-MIB amount per cell remained constant at all dilution rates. In conclusion, high light intensity and P-stress can contribute to the lower incidence of geosmin, whereas 2-MIB reduction could be attainable at a lower temperature.
Full-Text
Key_wordGeosmin, 2-methylisoborneol, chemostat, cyanobacteria, Anabaena, Planktothrix
References
  1. Cho H. 2007. 2-Methylisoborneol and natural organic matter adsorption by powdered activated carbon. MS Dissertation, University of Colorado, Colorado, USA.
  2. Bruchet A, Duguet JP, Suffe IM. 2004. Role of oxidants and disinfectants on the removal, masking and generation of tastes and odours. Rev. Environ. Sci. Biotechnol. 3: 33-41.
    CrossRef
  3. Watson SB. 2004. Aquatic taste and odor: a primary signal of drinking-water integrity. J. Toxicol. Environ. Health A 67: 1779-1795.
    Pubmed CrossRef
  4. Jüttner F, Watson SB. 2007. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 73: 4395-4406.
    Pubmed CrossRef Pubmed Central
  5. Watson SB, Monis P, Baker P, Giglio S. 2016. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Harmful Algae 54: 112-127.
    Pubmed CrossRef
  6. Kutovaya OA, Watson SB. 2014. Development and application of a molecular assay to detect and monitor geosmin-producing cyanobacteria and actinomycetes in the Great Lakes. J. Great Lakes Res. 40: 404-414.
    CrossRef
  7. Wang Z, Li R. 2015. Effects of light and temperature on the odor production of 2-methylisoborneol-producing Pseudanabaena sp. and geosmin-producing Anabaena ucrainica (cyanobacteria). Biochem. Syst. Ecol. 58: 219-226.
    CrossRef
  8. Su M, Yu J, Zhang J, Chen H, An W, Vogt RD, et al. 2015. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Water Res. 68: 444-453.
    Pubmed CrossRef
  9. Wang Z, Shao J, Xu Y, Yan B, Li R. 2015. Genetic basis for geosmin production by the water bloom-forming cyanobacterium, Anabaena ucrainica. Water 7: 175-187.
    CrossRef
  10. Otten TG, Graham JL, Harris TD, Dreher TW. 2016. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a midwestern drinking water supply reservoir by shotgun metagenomic analysis. Appl. Environ. Microbiol. 82: 5410-5420.
    Pubmed CrossRef Pubmed Central
  11. Vincent WF, Dryden SJ. 1989. Phytoplankton succession and cyanobacterial dominance in a eutrophic lake of the midtemperate zone (Lake Okaro, New Zealand). Arch. Hydrobiol. 32: 137-164.
  12. Tang EP, Tremblay R, Vincent WF. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 33: 171-181.
    CrossRef
  13. Naes H, Aarnes H, Utkilen HC, Nilsen S, Skulberg OM. 1985. Effect of photon fluence rate and specific growth rate on geosmin production of the cyanobacterium Oscillatoria brevis (Kütz.) Gom. Appl. Environ. Microbiol. 49: 1538-1540.
    Pubmed
  14. Saadoun IM, Schrader KK, Blevins WT. 2001. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Water Res. 35: 1209-1218.
    CrossRef
  15. Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. 2015. PhotoBiobox: a tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 103: 193-197.
    CrossRef
  16. Sawyer CN. 1966. Basic concepts of eutrophication. J. Water Pollut. Control Fed. 38: 737-744.
  17. Weiss CM. 1969. Relation of phosphates to eutrophication. J. Am. Water Works Assoc. 61: 387-391.
  18. Thompson PA, Oh HM, Rhee GY. 1994. Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J. Phycol. 30: 267-273.
    CrossRef
  19. Herbert D, Elsworth R, Telling RC. 1956. The continuous culture of bacteria; a theoretical and experimental study. Microbiology 14: 601-622.
    CrossRef
  20. Oh HM, Rhee GY. 1990. Preparation of unialgal cultures from natural waters by a micropipette technique. Algae 5: 131-136.
  21. Lloyd SW, Lea JM, Zimba PV, Grimm CC. 1998. Rapid analysis of geosmin and 2-methylisoborneol in water using solid phase micro extraction procedures. Water Res. 32: 2140-2146.
    CrossRef
  22. You KA, Byeon MS, Youn SJ, Hwang SJ, Rhew DH. 2013. Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North-Han River, Korea. Korean J. Ecol. Environ. 46: 135-144.
    CrossRef
  23. Rosen BH, MacLeod BW, Simpson MR. 1992. Accumulation and release of geosmin during the growth phases of Anabaena circinalis (Kutz.) Rabenhorst. Water Sci. Technol. 25: 185-190.
  24. Wei N, Hu L, Song L, Gan N. 2016. Microcystin-bound protein patterns in different cultures of Microcystis aeruginosa and field samples. Toxins 8: 293.
    Pubmed CrossRef Pubmed Central
  25. Byun JH, Hwang SJ, Kim BH, Park JR, Lee JK, Lim BJ. 2015. Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean J. Ecol. Environ. 48: 263-271.
    CrossRef
  26. Kim KY, Khan JB, Choi IC, Hong SH, Lee JB, Lee SH, et al. 2015. Temporal and spatial distribution of geosmin and 2-MIB in the Daecheong reservoir. Korean J. Environ. Agric. 34: 14-20.
    CrossRef
  27. Li Z, Hobson P, An W, Burch MD, House J, Yang M. 2012. Earthy odor compounds production and loss in three cyanobacterial cultures. Water Res. 46: 5165-5173.
    Pubmed CrossRef
  28. Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, et al. 2015. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 112: 857-862.
    Pubmed CrossRef Pubmed Central
  29. Macías FA, Galindo JL, García-Díaz MD, Galindo JC. 2008. Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem. Rev. 7: 155-178.
    CrossRef
  30. Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, Ito E, et al. 2008. Lysis of cyanobacteria with volatile organic compounds. Chemosphere 71: 1531-1538.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd