전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Articles Service

Supplementary
Share this article on :

Related articles in JMB

More Related Articles

Note

References

  1. Hemme D, Foucaud-Scheunemann C. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494.
    CrossRef
  2. Eom HJ, Park JM, Seo MJ, Kim MD, Han NS. 2008. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35: 953-959.
    Pubmed CrossRef
  3. Kang H, Myung EJ, Ahn KS, Eom HJ, Han NS, Kim YB, et al. 2009. Induction of Th1 cytokines by Leuconostoc mesenteroides subsp. mesenteroides (KCTC 3100) under Th2-type conditions and the requirement of NF-κB and p38/JNK. Cytokine 46: 283-289.
    Pubmed CrossRef
  4. Lee MS, Cho SK, Eom HJ, Kim SY, Kim TJ, Han NS. 2008. Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbiol. Biotechnol. 18: 1141-1145.
    Pubmed
  5. Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I. 2008. Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. World J. Gastroenterol. 14: 1192-1203.
    Pubmed PMC CrossRef
  6. Li L, Shin SY, Lee KW, Han NS. 2014. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase. Lett. Appl. Microbiol. 59: 404-411.
    Pubmed CrossRef
  7. Cho SK, Shin SY, Lee SJ, Li L, Moon JS, Kim DJ, et al. 2015. Simple synthesis of isomaltooligosaccharides during sauerkraut fermentation by addition of Leuconostoc starter and sugars. Food Sci. Biotechnol. 24: 1443-1446.
    CrossRef
  8. Jin Q, Li L, Moon JS, Cho SK, Kim YJ, Lee SJ, et al. 2016. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene. J. Biosci. Bioeng. 121: 479-483.
    Pubmed CrossRef
  9. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611-15616.
    Pubmed PMC CrossRef
  10. Kim YJ, Seo EY, Kim JH. 2012. Development of a chemically defined minimal medium for the exponential growth of Leuconostoc mesenteroides ATCC 8293. J. Microbiol. Biotechnol. 22: 1518-1522.
    Pubmed CrossRef
  11. Chervaux C, Ehrlich SD, Maguin E. 2000. Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Environ. Microbiol. 66: 5306-5311.
    Pubmed PMC CrossRef
  12. Carnicer M, Baumann K, Töplitz I, Sánchez-Ferrando F, Mattanovich D, Ferrer P, et al. 2009. Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb. Cell Fact. 8: 1.
    Pubmed PMC CrossRef
  13. Herbert D, Phipps PJ, Strange RE. 1971. Chemical analysis of microbial cells, pp. 209-344, In Norris JR, Ribbons DW (eds.). Methods in Microbiology, Vol. 5. Academic Press, London. UK.
  14. Novak L, Loubiere P. 2000. The metabolic network of Lactococcus lactis: distribution of 14C-labeled substrates between catabolic and anabolic pathways. J. Bacteriol. 182: 1136-1143.
    Pubmed PMC CrossRef
  15. Izard J, Limberger RJ. 2003. Rapid screening method for quantitation of bacterial cell lipids from whole cells. J. Microbiol. Methods 55: 411-418.
    CrossRef
  16. Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, et al. 2006. Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genomescale metabolic model. J. Biol. Chem. 281: 40041-40048.
    Pubmed CrossRef
  17. Kim SJ, Chang J, Singh M. 2015. Peptidoglycan architecture of gram-positive bacteria by solid-state NMR. Biochim. Biophys. Acta 1848: 350-362.
    Pubmed PMC CrossRef
  18. Douillard FP, de Vos WM. 2014. Functional genomics of lactic acid bacteria: from food to health. Microb. Cell Fact. 13: 1.
    Pubmed PMC CrossRef
  19. Oliveira AP, Nielsen J, Förster J. 2005. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5: 1.
    Pubmed PMC CrossRef
  20. Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. 2009. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75: 3627-3633.
    Pubmed PMC CrossRef
  21. Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, et al. 2011. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 6: e18783.
    Pubmed PMC CrossRef
  22. Vinay-Lara E, Hamilton JJ, Stahl B, Broadbent JR, Reed JL, Steele JL. 2014. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A. PLoS One 9: e110785.
    Pubmed PMC CrossRef