Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2016 ; Vol.26-11: 1845~1854

AuthorMyo-Deok Kim, Dong-Hyun Jung, Dong-Ho Seo, Jong-Hyun Jung, Ean-Jeong Seo, Nam-In Baek, Sang-Ho Yoo, Cheon-Seok Park
Place of dutyGraduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea,Korea Food Research Institute, Seongnam 13539, Republic of Korea
TitleAcceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives
PublicationInfo J. Microbiol. Biotechnol.2016 ; Vol.26-11
AbstractThe transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.
Full-Text
Key_wordAmylosucrase (ASase), Deinococcus radiopugnans, In silico molecular docking, quercetin-3-O-rutinoside (rutin), Transglycosylation, Acceptor specificity
References
  1. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
    Pubmed CrossRef
  2. Arvanitoyannis IS, Ladas D, Mavromatis A. 2006. Potential uses and applications of treated wine waste: a review. Int. J. Food Sci. Technol. 41: 475-487.
    CrossRef
  3. Auffinger P, Bielecki L, Westhof E. 2003. The Mg2+ binding sites of t he 5 S rR NA l oop E m otif a s investigated b y molecular dynamics simulations. Chem. Biol. 10: 551-561.
    CrossRef
  4. Azuma Y, Ozasa N, Ueda Y, Takagi N. 1986. Pharmacological studies on the anti-inflammatory action of phenolic compounds. J. Dent. Res. 65: 53-56.
    Pubmed CrossRef
  5. Bae HK, Lee SB, Park CS, Shim JH, Lee HY, Kim MJ, et al. 2002. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J. Agric. Food Chem. 50: 33093316.
    CrossRef
  6. Bojarová P, Křen V. 2000. Glycosidases: a key to tailored carbohydrates. Trends Biotechnol. 27: 199-209.
    Pubmed CrossRef
  7. Ćetković G, Čanadanović-Brunet J, Djilas S, Savatović S, Mandić A, Tumbas V. 2008. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem. 109: 340-347.
    Pubmed CrossRef
  8. Champion E, André I, Moulis C, Boutet J, Descroix K, Morel S, et al. 2009. Design of α-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J. Am. Chem. Soc. 131: 7379-7389.
    Pubmed CrossRef
  9. Champion E, Guérin F, Moulis C, Barbe S, Tran TH, Morel S, et al. 2012. Applying pairwise combinations of amino acid mutations for sorting out highly efficient glucosylation tools for chemo-enzymatic synthesis of bacterial oligosaccharides. J. Am. Chem. Soc. 134: 18677-18688.
    Pubmed CrossRef
  10. Chiba S. 1997. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 61: 1233-1239.
    Pubmed CrossRef
  11. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253.
    Pubmed CrossRef
  12. Chung MJ, Sung NJ, Park CS, Kweon DK, Mantovani A, Moon TW, et al. 2008. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur. J. Pharmacol. 578: 159-170.
    Pubmed CrossRef
  13. DeLano WL. 2002. The PyMOL Molecular Graphics System. Delano Scientific LLC, San Carlos, CA, USA.
  14. Fukamizo T, Miyake R, Tamura A, Ohnuma T, Skriver K, Pursiainen NV, Juffer AH. 2009. Flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds (Hordeum vulgare L.). Biochim. Biophys. Acta 1794: 1159-1167.
    Pubmed CrossRef
  15. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, FernándezGutiérrez A. 2010. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15: 8813-8826.
    Pubmed CrossRef
  16. Ha SJ, Seo DH, Jung JH, Cha J, Kim TJ, Kim YW, Park CS. 2009. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci. Biotechnol. Biochem. 73: 1505-1512.
    Pubmed CrossRef
  17. Hadi SM, Asad SF, Singh S, Ahmad A. 2000. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50:167-171.
    Pubmed CrossRef
  18. Hancock SM, Vaughan MD, Withers SG. 2006. Engineering of glycosidases and glycosyltransferases. Curr. Opin. Chem. Biol. 10: 509-519.
    Pubmed CrossRef
  19. Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. 2001. Protein flexibility predictions using graph theory. Proteins 44: 150-165.
    Pubmed CrossRef
  20. Jeong JW, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Park CS. 2014. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917.
    Pubmed CrossRef
  21. Jung JH, Jung TY, Seo DH, Yoon SM, Choi HC, Park BC, et al. 2011. Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus. Proteins 79: 633-644.
    Pubmed CrossRef
  22. Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344:1612-1619.
    Pubmed CrossRef
  23. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. 2009. The SWISS-MODEL repository and associated resources. Nucleic Acids Res. 37(Suppl 1): D387-D392.
    Pubmed CrossRef Pubmed Central
  24. Kim MD, Seo DH, Jung JH, Jung DH, Joe MH, Lim SY, et al. 2014. Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans. Food Sci. Biotechnol. 23: 2007-2012.
    CrossRef
  25. Li D, Roh SA, Shim JH, Mikami B, Baik MY, Park CS, Park KH. 2005. Glycosylation of genistin into soluble inclusion complex form of cyclic glucans by enzymatic modification. J. Agric. Food Chem. 56: 6516-6524.
    Pubmed CrossRef
  26. Linde GA, Laverde Jr A, Colauto NB. 2011. Changes to taste perception in the food industry: use of cyclodextrins, pp. 99-118. Handbook of Behavior, Food and Nutrition. Springer, New York.
  27. Lis-Balchin M, Deans SG. 1997. Bioactivity of selected plant essential oils against Listeria monocytogenes. J. Appl. Microbiol. 82: 759-762.
    Pubmed CrossRef
  28. Mazzaferro LS, Piñuel L, Erra-Balsells R, Giudicessi SL, Breccia JD. 2012. Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferylrutinoside. Carbohydr. Res. 347: 69-75.
    Pubmed CrossRef
  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. AutoDock4 and AutoDockTools4:automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791.
    Pubmed CrossRef Pubmed Central
  30. Park H, Kim J, Choi KH, Hwang S, Yang SJ, Baek NI, Cha J. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189.
    Pubmed CrossRef
  31. Pizzut-Serin S, Potocki-Véronèse G, van der Veen BA, Albenne C, Monsan P, Remaud-Simeon M. 2005. Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Lett. 579: 1405-1410.
    Pubmed CrossRef
  32. Potocki De Montalk G, Remaud-Simeon M, Willemot RM, Planchot V, Monsan P. 1999. Sequence analysis of the gene encoding amylosucrase from Neisseria polysaccharea and characterization of the recombinant enzyme. J. Bacteriol. 181:375-381.
    Pubmed Central
  33. Rowan AS, Hamilton CJ. 2006. Recent developments in preparative enzymatic syntheses of carbohydrates. Nat. Prod. Rep. 23: 412-443.
    Pubmed CrossRef
  34. Sanner MF. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17: 57-61.
    Pubmed
  35. Sawa T, Nakao M, Akaike T, Ono K, Maeda H. 1999. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the antitumorpromoter effect of vegetables. J. Agric. Food Chem. 47:397-402.
    Pubmed CrossRef
  36. Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISSMODEL:an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.
    Pubmed CrossRef Pubmed Central
  37. Seo DH, Jung JH, Choi HC, Cho HK, Kim HH, Ha SJ, et al. 2012. Functional expression of amylosucrase, a glucansynthesizing enzyme, from Arthrobacter chlorophenolicus A6. J. Microbiol. Biotechnol. 22: 1253-1257.
    Pubmed CrossRef
  38. Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, et al. 2012. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197.
    Pubmed CrossRef
  39. Seo DH, Jung JH, Ha SJ, Yoo SH, Kim TJ, Cha JH, Park CS. 2008. Molecular cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity, pp. 125-140. Carbohydrate-Active Enzymes: Structure, Function and Applications. Woodhead Publishing Limited, Cambridge, UK.
  40. Skov LK, Pizzut-Serin S, Remaud-Simeon M, Ernst HA, Gajhede M, Mirza O. 2013. The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69: 973-978.
    Pubmed CrossRef Pubmed Central
  41. Smith P, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem. 150: 76-85.
    CrossRef
  42. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of αamylase-related proteins. Protein Eng. Des. Sel. 19: 555-562.
    Pubmed CrossRef
  43. Suzuki Y, Uchida K. 1999. Enzymatic glycosylation of aglycones of pharmacological significance, pp. 297-312. Carbohydrate Biotechnology Protocols. Humana Press, New Jersey.
  44. Taylor JC, Takusagawa F, Markham GD. 2002. The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency. Biochemistry 41: 9358-9369.
    Pubmed CrossRef
  45. Thibodeaux CJ, Melançon CE, Liu HW. 2007. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446: 1008-1016.
    Pubmed CrossRef
  46. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26: 1701-1718.
    Pubmed CrossRef
  47. Wang LX, Huang W. 2009. Enzymatic transglycosylation for glycoconjugate synthesis. Curr. Opin. Chem. Biol. 13: 592-600.
    Pubmed CrossRef Pubmed Central
  48. Wang LX. 2008. Chemoenzymatic synthesis of glycopeptides and glycoproteins through endoglycosidase-catalyzed transglycosylation. Carbohydr. Res. 343: 1509-1522.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd