Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2016 ; Vol.26-9: 1557~1565

AuthorAmparo Jiménez-Quero, Eric Pollet, Minjie Zhao, Eric Marchioni, Luc Avérous, Vincent Phalip
Place of dutyBioTeam/ICPEES-ESBS, UMR CNRS 7515, Université de Strasbourg, 67412 Illkirch Cedex, France
TitleItaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains
PublicationInfo J. Microbiol. Biotechnol.2016 ; Vol.26-9
AbstractItaconic acid (IA) is a dicarboxylic acid included in the US Department of Energy’s (DOE) 2004 list of the most promising chemical platforms derived from sugars. IA is produced industrially using liquid-state fermentation (LSF) by Aspergillus terreus with glucose as the carbon source. To utilize IA production in renewable resource-based biorefinery, the present study investigated the use of lignocellulosic biomass as a carbon source for LSF. We also investigated the production of fumaric acid (FA), which is also on the DOE’s list. FA is a primary metabolite, whereas IA is a secondary metabolite and requires the enzyme cisaconitate decarboxylase for its production. Two lignocellulosic biomasses (wheat bran and corn cobs) were tested for fungal fermentation. Liquid hydrolysates obtained after acid or enzymatic treatment were used in LSF. We show that each treatment resulted in different concentrations of sugars, metals, or inhibitors. Furthermore, different acid yields (IA and FA) were obtained depending on which of the four Aspergillus strains tested were employed. The maximum FA yield was obtained when A. terreus was used for LSF of corn cob hydrolysate (1.9% total glucose); whereas an IA yield of 0.14% was obtained by LSF of corn cob hydrolysates by A. oryzae.
Full-Text
Supplemental Data
Key_wordlignocellulosic biomass, liquid state fermentation, biomass valorization
References
  1. Begum MF, Alimon AR. 2011. Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC4857.01 for fermentable sugar production. Electron. J. Biotechnol. 14: 5.
    CrossRef
  2. Bozell JJ, Petersen GR. 2010. Technology development for the production of biobased products from biorefinery carbohydrates — the US Department of Energy’s ‘Top 10’ revisited. Green Chem. 12: 539.
    CrossRef
  3. Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5: 578-595.
    Pubmed CrossRef Pubmed Central
  4. de Castro RJS, Sato HH. 2014. Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. 3: 20-25.
    CrossRef
  5. Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M. 2002. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J. Biosci. Bioeng. 94: 29-33.
    CrossRef
  6. Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J. Chem. Technol. Biotechnol. 81:1601-1611.
    CrossRef
  7. Gyamerah MH. 1995. Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl. Microbiol. Biotechnol. 44: 20-26.
    CrossRef
  8. Gyamerah M. 1995. Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl. Microbiol. Biotechnol. 44: 356-361.
    CrossRef
  9. Hendriks ATWM, Zeeman G. 2008. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.
    Pubmed CrossRef
  10. Hevekerl A, Kuenz A, Vorlop K-D. 2014. Filamentous fungi in microtiter plates - an easy way to optimize itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 98: 6983-6989.
    Pubmed CrossRef
  11. Jönsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16.
    Pubmed CrossRef Pubmed Central
  12. Kamm B. 2007. Production of platform chemicals and synthesis gas from biomass. Angew. Chem. Int. Ed. 46: 5056-5058.
    Pubmed CrossRef
  13. Kanamasa S, Dwiarti L, Okabe M, Park EY. 2008. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biotechnol. 80: 223-229.
    Pubmed CrossRef
  14. Karaffa L, Díaz R, Papp B, Fekete E, Sándor E, Kubicek CP. 2015. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl. Microbiol. Biotechnol. 99: 7937-7944.
    Pubmed CrossRef
  15. Klement T, Büchs J. 2013. Itaconic acid – a biotechnological process in change. Bioresour. Technol. 135: 422-431.
    Pubmed CrossRef
  16. Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D. 2012. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 96: 1209-1216.
    Pubmed CrossRef
  17. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729.
    CrossRef
  18. Le Digabel F, Avérous L. 2006. Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydr. Polym. 66: 537-545.
    CrossRef
  19. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM. 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156: 395-403.
    CrossRef
  20. Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, HerpoëlGimbert I. 2014. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 1: 1.
    CrossRef
  21. Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR. 2006. Chemicals and energy from biomass. Can. J. Chem. 84:960-970.
    CrossRef
  22. Lutz J-F, Börner HG. 2008. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 33: 1-39.
    CrossRef
  23. Magnuson JK, Lasure LL. 2004. Organic acid production by filamentous fungi, pp. 307-340. In Tkacz JS, Lange L (eds.). Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Kluwer Academic, NY.
    CrossRef
  24. Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38: 522-550.
    CrossRef
  25. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  26. Mondala AH. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42: 487-506.
    Pubmed CrossRef
  27. Okuda J, Miwa I, Maeda K, Tokui K. 1977. Rapid and sensitive, colorimetric determination of the anomers of D-glucose with D-glucose oxidase, peroxidase, and mutarotase. Carbohydr. Res. 58: 267-270.
    CrossRef
  28. Phalip V, Debeire P, Jeltsch J-M. 2012. Bioethanol, pp. 223-238. In Pinheiro Lima MA (ed.). InTech Europe.
  29. Riscaldati E, Moresi M, Federici F, Petruccioli M. 2000. Effect of pH and stirring rate on itaconate production by Aspergillus terreus. J. Biotechnol. 83: 219-230.
    CrossRef
  30. Sandhya C, Sumantha A, Szakacs G, Pandey A. 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40: 2689-2694.
    CrossRef
  31. Schmidt CG, Gonçalves LM, Prietto L, Hackbart HS, Furlong EB. 2014. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem. 146: 371-377.
    Pubmed CrossRef
  32. van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, et al. 2014. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb. Cell Factories 13: 1.
    Pubmed CrossRef Pubmed Central
  33. Veli kovi SJ, Dzunuzovic ES, Griffiths PC, Lacik I, Filipovic J, Popovis IG. 2008. Polymerization of itaconic acid initiated by a potassium persulfate/N,N-dimethylethanolamine system. J. Appl. Polym. Sci. 110: 3275-3282.
  34. Werpy T, Holladay J, White J. 2004. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. DOE Scientific and Technical Information.
    Pubmed CrossRef
  35. Xu Q, Li S, Fu Y, Tai C, Huang H. 2010. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 101: 6262-6264.
    Pubmed CrossRef
  36. Xu Q, Li S, Huang H, Wen J. 2012. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 30: 1685-1696.
    Pubmed CrossRef
  37. Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, et al. 2014. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol. 14: 22.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd