Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2016 ; Vol.26-7: 1234~1241

AuthorPrimata Mardina, Jinglin Li, Sanjay K.S. Patel, In-Won Kim, Jung-Kul Lee, Chandrabose Selvaraj
Place of dutyDepartment of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
TitlePotential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane
PublicationInfo J. Microbiol. Biotechnol.2016 ; Vol.26-7
AbstractMethanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.
Full-Text
Supplemental Data
Key_wordmethane, methanol, biocatalyst, whole-cell immobilization, Methylocella tundrae, immobilization
References
  1. Bose R, Balasingam SK, Shin S, Jin Z, Kyon D-H, Jun Y, Min Y-S. 2015. Importance of hydrophilic pretreatment in the hydrothermal growth of amorphous molybdenum sulfide for hydrogen evolution catalysis. Langmuir 31: 5220-5227.
    Pubmed CrossRef
  2. Chi Z-F, Lu W-J, Wang H-T. 2015. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of Southern China. J. Microbiol. Biotechnol. 25:423-430.
    Pubmed CrossRef
  3. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, et al. 2004. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int. J. Syst. Evol. Microbiol. 54: 151-156.
    Pubmed CrossRef
  4. Dhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC, Lee J-K. 2015. Simultaneous pretreatment and saccharification:green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179: 50-57.
    Pubmed CrossRef
  5. Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353.
    Pubmed CrossRef
  6. Gao H, Kim I-W, Choi J-H, Khera E, Wen F, Lee J-K. 2015. Repeated production of L-xylulose by an immobilized whole-cell biocatalyst harboring L-arabinitol dehydrogenase coupled with an NAD+ regeneration system. Biochem. Eng. 96: 23-28.
    CrossRef
  7. Ge X, Yang L, Sheets JP, Yu Z, Li Y. 2014. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32: 1460-1475.
    Pubmed CrossRef
  8. Han J-S, Ahn C-M, Mahanty B, Kim C-G. 2013. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171: 1487-1499.
    Pubmed CrossRef
  9. Hwang IY, Hur DH, Lee JH, Park C-H, Chang IS, Lee JW, Lee EY. 2015. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375-380.
    Pubmed CrossRef
  10. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, et al. 2014. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597-1605.
    Pubmed CrossRef
  11. Jamil M, Ahmad F, Jeon YJ. 2016. Renewable energy technologies adopted by the UAE: prospects and challenges - A comprehensive overview. Renew. Sustain. Energy Rev. 55:1181-1194.
    CrossRef
  12. Jung S-J, Kim S-H, Chung I-M. 2015. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83:322-327.
    CrossRef
  13. Kalyani D, Lee K-M, K im T-S, L i J, D himan SS, K ang YC, Lee J-K. 2013. Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107: 815-822.
    CrossRef
  14. Kalyani D , Tiwari M K, L i J, Kim SC, K alia V C, K ang YC, Lee J-K. 2015. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One 10: 1-17.
    Pubmed CrossRef Pubmed Central
  15. Kim HG, Han GH, Kim SW. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioproc. Eng. 15: 476-480.
    CrossRef
  16. Kim HJ, Kim YH, Shin J-H, Bhatia SK, Sathiyanarayanan G, Seo H-M, et al. 2015. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J. Microbiol. Biotechnol. 25: 1108-1113.
    Pubmed CrossRef
  17. Kim T-S, Jung H-M, Kim S-Y, Zhang L, Sigdel S, Park J-H, et al. 2015. Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J. Microbiol. Biotechnol. 25: 1093-1100.
    Pubmed CrossRef
  18. Kopp DA, Lippard SJ. 2002. Soluble methane monooxygenase:activation of dioxygen and methane. Chem. Biol. 6: 568-576.
  19. Kumar P , Patel SKS, Lee J-K, Kalia VC. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 31: 1543-1561.
    Pubmed CrossRef
  20. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182:383-388.
    Pubmed CrossRef
  21. Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W. 2012. Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123:636-645.
    Pubmed CrossRef
  22. Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950.
    Pubmed CrossRef
  23. Lee S-H, Kwon M-A, Choi S, Kim S, Kim J, Shin Y-A, Kim K-H. 2015. A new shuttle plasmid that stably replicates in Clostridium acetobutylicum. J. Microbiol. Biotechnol. 25: 1702-1708.
    Pubmed CrossRef
  24. Mehta PK, Mishra S, Ghose TK. 1991. Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium:batch and continuous studies. Biotechnol. Bioeng. 37: 551-556.
    Pubmed CrossRef
  25. Morton JD, Hayes KF, Semrau JD. 2000. Bioavailability of chelated and soil-adsorbed copper to Methylosinus trichosporium OB3b. Environ. Sci. Technol. 34: 4917-4922.
    CrossRef
  26. Patel SKS, Choi S-H, Kang Y-C, Lee J-K. 2016. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738.
    Pubmed CrossRef
  27. Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee J-K. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647.
    Pubmed CrossRef
  28. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee J-K, Kalia VC. 2014. Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int. J. Hydrogen Energy 39: 14663-14668.
    CrossRef
  29. Patel SKS, Kumar P, Singh M, Lee J-K, Kalia VC. 2015. Integrative approach to produce hydrogen and polyhydroxy alkanoate from biowaste using defined bacterial cultures. Bioresour. Technol. 176: 136-141.
    Pubmed CrossRef
  30. Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W. 2016. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 26: 717-724.
    Pubmed CrossRef
  31. Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K. 2016. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl. Energy 171: 383-391.
    CrossRef
  32. Pen N, Soussan L, Belleville M-P, Sanchez J, Charmette C, Paolucci-Jeanjean D. 2014. An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 174: 42-52.
    Pubmed CrossRef
  33. Pierie F, V an Someren CEJ, B enders RMJ, Bekkering J, Van Gemert WJT, Moll HC. 2015. Environmental and energy system analysis of bio-methane production pathways: a comparison between feedstocks and process optimizations. Appl. Energy 160: 456-466.
    CrossRef
  34. Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong G-T, Kim S-K. 2015. Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J. Microbiol. Biotechnol. 25: 856-862.
    Pubmed CrossRef
  35. Rahman AT, Lee SJ, Jung SW. 2015. Evaluation of timetemperature integrators (TTIs) with microorganism-entrapped microbeads produced using homogenization and SPG membrane emulsification techniques. J. Microbiol. Biotechnol. 2058-2071.
    Pubmed CrossRef
  36. Razumovsky SD, Efremenko EN, Makhlis TA, Senko OV, Bikhovsky MY, Podmasterev VV, Varfolomeev SD. 2008. Effect of immobilization on the main dynamic characteristics of the enzymatic oxidation of methane to methanol by bacteria Methylosinus sporium B-2121. Russ. Chem. Bull. Int. Ed. 57: 1633-1636.
  37. Ricci MA, Russo A, Pisano I, Palmieri L, Angelis MD, Agrimi G. 2015. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. J. Microbiol. Biotechnol. 25: 893-902.
    Pubmed CrossRef
  38. Rodrigues ADS, Salgado BVAM. 2009. Analysis of methane biodegradation by Methylosinus trichosporium OB3b. Braz. J. Microbiol. 40: 301-307.
    CrossRef Pubmed Central
  39. Sheets JP, Ge X, Li Y-F, Yu Z, Li Y. 2016. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 201:50-57.
    Pubmed CrossRef
  40. Sigdel S, Hui G, Smith TJ, Murrell JC, Lee J-K. 2015. Molecular dynamics simulation to rationalize regioselective hydroxylation of aromatic substrates by soluble methane monooxygenase. Bioorg. Med. Chem. Lett. 25: 1611-1615.
    Pubmed CrossRef
  41. Strong PJ, Xie S, Clarke WP. 2015. Methane as a resource:can the methanotrophs add value? Environ. Sci. Technol. 49:4001-4018.
    Pubmed CrossRef
  42. Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152.
    CrossRef
  43. Trop P, Anicic B, Goricanec D. 2014. Production of methanol from a mixture of torrefied biomass and coal. Energy 77:125-132.
    CrossRef
  44. Xin J-Y, Cui J-R, Niu J-Z, Hua S-F, Xia C-G, Li S-B, Zhu L-M. 2004. Biosynthesis of methanol from CO2 and CH4 by methanotrophic bacteria. Biotechnology 3: 67-71.
    CrossRef
  45. Yoo Y-S, Hana J-S, Ahn C-M, Kim C-G. 2015. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ. Technol. 36: 983-991.
    Pubmed CrossRef
  46. Zhao C, D eng Y, Wang X, Li Q, Huang Y , Liu B. 2014. Identification and characterization of an anaerobic ethanolproducing cellulolytic bacterial consortium from great basin hot springs with agricultural residues and energy crops. J. Microbiol. Biotechnol. 24: 1280-1290.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd