Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2016 ; Vol.26-3: 488~492

AuthorChi Eun Hong, Haeyoung Jeong, Sung Hee Jo, Jae Cheol Jeong, Suk Yoon Kwon, Donghwan An, Jeong Mee Park
Place of dutyPlant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, University of Science and Technology, Daejeon 34113, Republic of Korea
TitleA Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata
PublicationInfo J. Microbiol. Biotechnol.2016 ; Vol.26-3
AbstractRhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.
Full-Text
Supplemental Data
Key_wordBacterial endophyte, biocontrol agent, black rot disease, Rhodococcus sp., sweet potato
References
  1. Bosello M, Zeyadi M, Kraas FI, Linne U, Xie X, Marahiel MA. 2013. Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. J. Nat. Prod. 76:2282-2290.
    Pubmed CrossRef
  2. Carrano C, Jordan M, Drechsel H, Schmid D, Winkelmann G. 2001. Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 14: 119-125.
    CrossRef
  3. Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K. 1999. Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcus sp. J. Antibiot. 52: 695699.
  4. Creason AL, Davis EW, Putnam ML, Vandeputte OM, Chang JH. 2014. Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front. Plant Sci. 5: 406.
    Pubmed CrossRef Pubmed Central
  5. Engelbrecht CJB, Harrington TC. 2005. Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 97: 57-69.
    Pubmed CrossRef
  6. Hong C, Jo S, Moon J, Lee J-S, Kwon S-Y, Park J. 2015. Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana a nd t heir a ntagonistic effects o n phytophathogens. Plant Biotechnol. Rep. 9: 451-458.
    CrossRef
  7. Kang SH, Cho H-S, Cheong H, Ryu C-M, Kim JF, Park S-H. 2007. Two bacterial endophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 17: 96-103.
    Pubmed
  8. Kitagawa W, Ozaki T, Nishioka T, Yasutake Y, Hata M, Nishiyama M, et al. 2013. Cloning and heterologous expression of the aurachin RE biosynthesis gene cluster afford a new cytochrome P450 for quinoline N-hydroxylation. Chembiochem Eur. J. Chem. Biol. 14: 1085-1093.
    Pubmed CrossRef
  9. Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K, et al. 2012. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep. 31: 987-997.
    Pubmed CrossRef
  10. Najafipour G, Ebadi N, Ayazpour K. 2014. Phenotypic and genotypic diversity of Rhodococcus fascians, using RAPD-PCR in Fars province. Ind. J. Fund. Appl. Life Sci. 4: 293-302.
  11. Park S-Y, Yang S-H, Choi S-K, Kim J-G, Park S-H. 2007. Isolation and characterization of endophytic bacteria from rice root cultivated in Korea. Kor. J. Microbiol. Biotechnol. 35:1-10.
  12. Rosenblueth M, Martinez-Romero E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Int. 19:827-837.
    Pubmed CrossRef
  13. Sc hneider CA, R asband WS, E liceiri KW. 2 012. N IH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671675.
  14. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.
    Pubmed CrossRef
  15. Stes E, Vandeputte OM, Jaziri ME, Holsters M, Vereecke D. 2011. A successful bacterial coup d’État: how Rhodococcus fascians redirects plant development. Ann. Rev. Phytopathol. 49: 69-86.
    Pubmed CrossRef
  16. Von Bargen K, Haas A. 2009. Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol. Rev. 33: 870-891.
    Pubmed CrossRef
  17. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2 015. antiSMASH 3 .0 — a c omprehensive resourc e for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-W243.
    Pubmed CrossRef Pubmed Central
  18. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821-829.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd