Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2016 ; Vol.26-3: 579~587

AuthorSukyung Kang, Jae Sung Lee, Hai Chon Lee, Michael C. Petriello, Bae Yong Kim, Jeong Tae Do, Dae-Seog Lim, Hong Gu Lee, Sung Gu Han
Place of dutyDepartment of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
TitlePhytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells
PublicationInfo J. Microbiol. Biotechnol.2016 ; Vol.26-3
AbstractMastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPSinduced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.
Full-Text
Key_wordmastitis, lipopolysaccharide, MAC-T cell, inflammation, COX-2
References
  1. Akira S. 2003. Mammalian Toll-like receptors. Curr. Opin. Immunol. 15: 5-11.
    CrossRef
  2. Bradley A. 2002. Bovine mastitis: an evolving disease. Vet. J. 164: 116-128.
    Pubmed CrossRef
  3. Chandrasekharan NV, Simmons DL. 2004. The cyclooxygenases. Genome Biol. 5: 241.
    Pubmed CrossRef Pubmed Central
  4. De UK, Mukherjee R. 2014. Activity of cyclooxygenase-2 and nitric oxide in milk leucocytes following intramammary inoculation of a bio-response modifier during bovine Staphylococcus aureus subclinical mastitis. Vet. Res. Commun. 38: 201-207.
    Pubmed CrossRef
  5. Fujimori H, Hisama M, Shibayama H, Iwaki M. 2009. Protecting effect of phytoncide solution on normal human dermal fibroblasts against reactive oxygen species. J. Oleo Sci. 58: 429-436.
    Pubmed CrossRef
  6. Giudice A, Arra C, Turco MC. 2010. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 647: 37-74.
    Pubmed CrossRef
  7. Ha T, Liu L, Kelley J, Kao R, Williams D, Li C. 2011. Tolllike receptors: new players in myocardial ischemia/reperfusion injury. Antioxid. Redox Signal. 15: 1875-1893.
    Pubmed CrossRef Pubmed Central
  8. Han SG, Han SS, Toborek M, Hennig B. 2012. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol. 261: 181-188.
    Pubmed CrossRef Pubmed Central
  9. Hisama M, Matsuda S, Tanaka T, Shibayama H, Nomura M, Iwaki M. 2008. Suppression of mutagens-induced SOS response by phytoncide solution using Salmonella typhimurium TA1535/pSK1002 umu test. J. Oleo Sci. 57: 381-390.
    Pubmed CrossRef
  10. Hu P, Huang P, Chen MW. 2013. Curcumin attenuates cyclooxygenase-2 expression via inhibition of the NF-kappaB pathway in lipopolysaccharide-stimulated human gingival fibroblasts. Cell Biol. Int. 37: 443-448.
    Pubmed CrossRef
  11. Huang BP, Lin CH, Chen YC, Kao SH. 2014. Antiinflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW264.7 cells. Mol. Med. Rep. 10: 1077-1083.
    Pubmed
  12. Kang SN, Kim SE, Choi J, Park K, Goo JH, Sim DS, et al. 2015. Comparison of phytoncide with sirolimus as a novel drug candidate for drug-eluting stent. Biomaterials 44: 1-10.
    Pubmed CrossRef
  13. Kang SR, Han DY, Park KI , Park HS, Cho YB, Lee HJ, et al. 2011. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW 264.7 cells via NF-kappaB signal pathway. Evid. Based Complement. Alternat. Med. 2011: 248592.
    Pubmed CrossRef Pubmed Central
  14. Kim HN, Kim DH, Kim EH, Lee MH, Kundu JK, Na HK, et al. 2014. Sulforaphane inhibits phorbol ester-stimulated IKKNFkappaB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-kappaB activating kinase and ERK. Cancer Lett. 351: 41-49.
    Pubmed CrossRef
  15. Lahouassa H, Moussay E, Rainard P, Riollet C. 2007. Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 38: 12-21.
    Pubmed CrossRef
  16. Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. 2009. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J. Agric. Food Chem. 57: 305-310.
    Pubmed CrossRef
  17. Li D, Zhang N, Cao Y, Zhang W, Su G, Sun Y, et al. 2013. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-kappaB and MAPKs signal pathways. Eur. J. Pharmacol. 705: 79-85.
    Pubmed CrossRef
  18. Li F, Wang W, Cao Y, Liang D, Zhang W, Zhang Z, et al. 2014. Inhibitory effects of astragalin on lipopolysaccharideinduced inflammatory response in mouse mammary epithelial cells. J. Surg. Res. 192: 573-581.
    Pubmed CrossRef
  19. Li Q, Nakadai A, Matsushima H, Miyazaki Y, Krensky AM, Kawada T, Morimoto K. 2006. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol. Immunotoxicol. 28: 319-333.
    Pubmed CrossRef
  20. Liu M, Song S, Li H, Jiang X, Yin P, Wan C, et al. 2014. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J. Dairy Sci. 97: 2856-2865.
    Pubmed CrossRef
  21. Miyake K. 2004. Endotoxin recognition molecules, Toll-like receptor 4-MD-2. Semin. Immunol. 16: 11-16.
    Pubmed CrossRef
  22. Niu M, Shen Y, Xu X, Yao Y, Fu C, Yan Z, et al. 2015. Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-kappaB p65 subunit nuclear import. Biochem. Biophys. Res. Commun. 462: 326-331.
    Pubmed CrossRef
  23. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. 2015. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res. 29: 323-331.
    Pubmed CrossRef
  24. Reuven EM, Fink A, Shai Y. 2014. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochim. Biophys. Acta 1838: 1586-1593.
    Pubmed CrossRef
  25. Ru K, Su F, Zheng Y, Zhang Y, Luo Y, Guo Z, et al. 2015. Inducible expression of enhanced green fluorescent protein by interleukin-1alpha, interleukin-1beta and Toll-like receptor 2 promoters in goat mammary epithelial cells in response to bacterial challenges. Vet. J. 203: 85-91.
    Pubmed CrossRef
  26. Schukken Y, Chuff M, Moroni P, Gurjar A, Santisteban C, Welcome F, Zadoks R. 2012. The “other” gram-negative bacteria in mastitis: Klebsiella, Serratia, and more. Vet. Clin. North Am. Food Anim. Pract. 28: 239-256.
    Pubmed CrossRef
  27. Seo KH, Park MJ, Ra JE, Han SI, Nam MH, Kim JH, et al. 2014. Saponarin from barley sprouts inhibits NF-kappaB and MAPK on LPS-induced RAW 264.7 cells. Food Funct. 5:3005-3013.
    Pubmed CrossRef
  28. Song X, Wang T, Zhang Z, Jiang H, Wang W, Cao Y, Zhang N. 2015. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPSinduced mouse mastitis. Inflammation 38: 79-88.
    Pubmed CrossRef
  29. Song X, Zhang W, Wang T, Jiang H, Zhang Z, Fu Y, et al. 2014. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide induced mastitis in mice. Inflammation 37: 1588-1598.
    Pubmed CrossRef
  30. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481: 243-268.
    CrossRef
  31. Takeda K, Akira S. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14.
    Pubmed CrossRef
  32. Tan KP, Kosuge K, Yang M, Ito S. 2008. NRF2 as a determinant of cellular resistance in retinoic acid cytotoxicity. Free Radic. Biol. Med. 45: 1663-1673.
    Pubmed CrossRef
  33. Thompson-Crispi K, Atalla H, Miglior F, Mallard BA. 2014. Bovine mastitis: frontiers in immunogenetics. Front. Immunol. 5: 493.
    Pubmed CrossRef Pubmed Central
  34. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stressinduced cancer. Chem. Biol. Interact. 160: 1-40.
    Pubmed CrossRef
  35. Xie S, Liu B, Fu S, Wang W, Yin Y, Li N, et al. 2014. GLP-2 suppresses LPS-induced inflammation in macrophages by inhibiting ERK phosphorylation and NF-kappaB activation. Cell. Physiol. Biochem. 34: 590-602.
    Pubmed CrossRef
  36. Zhao K, Song X, Huang Y, Yao J, Zhou M, Li Z, et al. 2014. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-kappaB signaling. Eur. J. Pharmacol. 737: 57-69.
    Pubmed CrossRef
  37. Zhao X, Lacasse P. 2008. Mammary tissue damage during bovine mastitis: causes and control. J. Anim. Sci. 86: 57-65.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd