Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2016 ; Vol.26-1: 151~159

AuthorMunazza Fatima, Najam-us-Sahar Sadaf Zaidi, Deeba Amraiz, Farhan Afzal
Place of dutyAtta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Kashmir Highway, Islamabad, Pakistan
TitleIn Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus
PublicationInfo J. Microbiol. Biotechnol.2016 ; Vol.26-1
AbstractNanoparticles have wide-scale applications in various areas, including medicine, chemistry, electronics, and energy generation. Several physical, biological, and chemical methods have been used for synthesis of silver nanoparticles. Green synthesis of silver nanoparticles using plants provide advantages over other methods as it is easy, efficient, and eco-friendly. Nanoparticles have been extensively studied as potential antimicrobials to target pathogenic and multidrug-resistant microorganisms. Their applications recently extended to development of antivirals to inhibit viral infections. In this study, we synthesized silver nanoparticles using Cinnamomum cassia (Cinnamon) and evaluated their activity against highly pathogenic avian influenza virus subtype H7N3. The synthesized nanoparticles were characterized using UVVis absorption spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Cinnamon bark extract and its nanoparticles were tested against H7N3 influenza A virus in Vero cells and the viability of cells was determined by tetrazolium dye (MTT) assay. The silver nanoparticles derived from Cinnamon extract enhanced the antiviral activity and were found to be effective in both treatments, when incubated with the virus prior to infection and introduced to cells after infection. In order to establish the safety profile, Cinnamon and its corresponding nanoparticles were tested for their cytotoxic effects in Vero cells. The tested concentrations of extract and nanoparticles (up to 500 μg/ml) were found non-toxic to Vero cells. The biosynthesized nanoparticles may, hence, be a promising approach to provide treatment against influenza virus infections.
Full-Text
Key_wordAntiviral activity, Nanoparticles, H7N3, Influenza, Cinnamomum cassia, Cinnamon bark
References
  1. Ankamwar B, Chaudhary M, Sastry M. 2005. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Syn. React. Inorg. Met. 35: 19-26.
    CrossRef
  2. Ankanna S, Prasad TNVKV, Elumalai EK, Savithramma N. 2010. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig. J. Nanomater. Biostruct. 5: 369-372.
  3. Bae CH, Nam SH, Park SM. 2002. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci. 197: 628-634.
    CrossRef
  4. Baram-Pinto D, Shukla S, Gedanken A, Sarid R. 2010. Inhibition of HSV-1 attachment, entry, and cell-to-cell Spread by functionalized multivalent gold nanoparticles. Small 6:1044-1050.
    Pubmed CrossRef
  5. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. 2009. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 20: 1497-1502.
    Pubmed CrossRef
  6. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22: 577-583.
    Pubmed CrossRef
  7. Choi YK, Ozaki H, Webby RJ, Webster RG, Peiris JS, Poon L, et al. 2004. Continuing evolution of H9N2 influenza viruses in Southeastern China. J. Virol. 78: 8609-8614.
    Pubmed CrossRef Pubmed Central
  8. Cralg, WJ. 1999. Health-promoting properties of common herbs. Amer. J. Clin. Nutr. 70: 4915-4995.
  9. Da Costa AO, De Assis MC, Marques EA, Plotkowski MC. 1999. Comparative analysis of three methods to assess viability of mammalian cells in culture. Biocell 23: 65-72.
    Pubmed
  10. De Clercq E. 2004. Antiviral drugs in current clinical use. J. Clin. Virol. 30: 115-133.
    Pubmed CrossRef
  11. Elechiguerra JL, Burt JL, Morones JR. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology 3: 1-10.
    Pubmed CrossRef Pubmed Central
  12. Esteban D. 2010. Mechanisms of viral emergence. Vet. Res. 41: 38.
    Pubmed CrossRef Pubmed Central
  13. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan P, Yao X, et al. 2012. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int. J. Nanomedicine 7: 5007-5018.
  14. Ferguson NM, Cummings DAT, Cauchemez S. 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437: 209-214.
    Pubmed CrossRef
  15. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA. Munster V, et al. 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 101: 1356-1361.
    Pubmed CrossRef Pubmed Central
  16. Galdiero S, Falanga A, Cantisani M, Ingle A, Galdiero M, Rai M. 2014. Silver nanoparticles as novel antibacterial and antiviral agents, pp. 565-594. In: Frontiers of Nanomedical Research. Worlds Scientific Publishing, Singapore.
    CrossRef
  17. Gan PP, Li SF. 2012. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Biotechnol. 11: 169-206.
    CrossRef
  18. Geethalakshmi R, Sarada DVL. 2010. Synthesis of plantmediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti-microbial activities. Int. J. Eng. Sci. Technol. 2: 970-975.
  19. Ha Y, Stevens DJ, Skehel JJ, Wiley DC. 2001. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. USA 98: 11181-11186.
    Pubmed CrossRef Pubmed Central
  20. Hayashi K, Imanishi N, Kashiwayama Y, Kawano A, Terasawa K, Shimada Y, Ochiai H. 2007. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res. 74: 1-8.
    Pubmed CrossRef
  21. Huang J, Chen C, He N. 2007. Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomum camphora leaf. Nanotechnology 18: 105-106.
    CrossRef
  22. Kinoshita E, Hayashi K, Katayama H, Hayashi T, Obata A. 2012. Anti-influenza virus effects of elderberry juice and its fractions. Biosci. Biotechnol. Biochem. 76: 1633-1638.
    Pubmed CrossRef
  23. Klaus T, Joerger R, Olsson E, Granqvist CG. 1999. Silverbased crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 96: 13611-13614.
    Pubmed CrossRef Pubmed Central
  24. Ko HC, Wei BL, Chiou WF. 2006. The effect of medicinal plants u sed in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells. J. Ethnopharmacol. 107: 205-210.
    Pubmed CrossRef
  25. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, et al. 2007. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 128: 648-653.
    Pubmed CrossRef
  26. Kubo T, Nishimura H. 2007. Antipyretic effect of Mao-to, a Japanese herbal medicine, for treatment of type A influenza infection in children. Phytomedicine 14: 96-101.
    Pubmed CrossRef
  27. Kwon HJ, Kim HH, Yoon SY, Ryu YB, Chang JS, Cho KO, et al. 2010. In Vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. Virol. J. 7: 307.
    Pubmed CrossRef Pubmed Central
  28. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK. 2011. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology 9: 30.
    Pubmed CrossRef Pubmed Central
  29. Lee JB, Miyake S, Umetsu R, Hayashi K, Chijimatsu T, Hayashi T. 2012. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem. 134:2164-2168.
    Pubmed CrossRef
  30. Liu YC, Lin LH. 2004. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem. Commun. 6: 1163-1168.
    CrossRef
  31. Lu L, Sun RW, Chen RWR , Hui CK, Ho CM, Luk JM, et al. 2008. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 13: 253-262.
    Pubmed
  32. Mallick K, Witcombb MJ, Scurrella MS. 2005. Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering. Mater. Chem. Phys. 90: 221-224.
    CrossRef
  33. Mallikarjun K, Narsimha G, Dillip G, Praveen B, Shreedhar B, Lakshmi S. 2011. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig. J. Nanomater. Biostruct. 6: 181-186.
  34. Mantani N, Andoh T, Kawamata H, Terasawa K, Ochiai H. 1999. Inhibitory effect of Ephedrae herba, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells. Antiviral Res. 44: 193-200.
    CrossRef
  35. Jancy ME, Inbathamizh L. 2012. Green synthesis and characterization of nano silver using leaf extract of Morinda pubescens. Asian J. Pharm. Clinical Res. 5: 159-162.
  36. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. 2013. Antiviral activity of silver nanoparticles/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 8: 93.
    Pubmed CrossRef Pubmed Central
  37. Nair B, Pradeep T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293-298.
    CrossRef
  38. Noh HJ, A-Rang I, Kim H. 2012. Antimicrobial activity and increased freeze-drying stability of sialyllactose-reduced silver nanoparticles using sucrose and trehalose. J. Nanosci. Nanotechnol. 12: 3884-3895.
    Pubmed CrossRef
  39. Papp I, Sieben C, Ludwig K, Roskamp M, Bottcher C, Schlecht S, et al. 2010. Inhibition of Influenza virus infection by multivalent Sialic-acid-functionalized Gold nanoparticles. Small 6: 2900-2906.
    Pubmed CrossRef
  40. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, et al. 2003. Biological applications of colloidal nanocrystals. Nanotechnology 14: 15-27.
    CrossRef
  41. Peyre M, Fusheng G, Desvaux S, Roger F. 2009. Avian influenza vaccines: a practical review in relation to their application in the field with a focus on the Asian experience. Epidemiol. Infect. 137: 1-21.
    Pubmed CrossRef
  42. Poland GA, Jacobson RM, Ovsyannikova IG. 2009. Influenza virus resistance to antiviral agents: a plea for rational use. Clin. Infect. Dis. 48: 1254-1256.
    Pubmed CrossRef Pubmed Central
  43. Prathap SC, Chaudhary M, Pasricha R, Ahmad A, Sastry M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22: 577-583.
    Pubmed CrossRef
  44. Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 493-497.
  45. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. 2008. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 3: 129-133.
    CrossRef Pubmed Central
  46. Sandmann G, Dietz H, Plieth W. 2000. Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J. Electroanal. Chem. 491: 78-86.
    CrossRef
  47. Shankar SS, Ahmad A, Rai A, Sastry M. 2004. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles by using neem (Azadirachta indica) leaf broth. J. Colloid. Interface Sci. 275: 496-502.
    Pubmed CrossRef
  48. Shankar SS, Rai A, Ahmad A, Sastry M. 2005. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infraredabsorbing optical coatings. Chem. Mater. 17: 566-572.
    CrossRef
  49. Shivshankar S, Ahmad A, Sastry M. 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19: 1627-1631.
    Pubmed CrossRef
  50. Sivaraman SK, Elango I, Kumar S, Santhanam V. 2009. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97: 1055-1059.
  51. Skehel JJ, Wiley, DC. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann. Rev. Biochem. 69: 531-569
    Pubmed CrossRef
  52. Smetana AB, Klabunde KJ, Sorensen CM. 2005. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J. Colloid. Interface Sci. 284: 521-526.
    Pubmed CrossRef
  53. Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid. Interface Sci. 275: 177-182.
    Pubmed CrossRef
  54. Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM. 2010. Interaction of silver nanoparticles with Tacaribe virus. J. Nanobiotechnology 8: 19.
    Pubmed CrossRef Pubmed Central
  55. Sriwilaijaroen N, Fukumoto S, Kumagai K, Hiramatsu H, Odagiri T, Tashiro M, Suzuki Y. 2012. Antiviral effects of Psidium guajava Linn (guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition. Antivir. Res. 94: 139-146.
    Pubmed CrossRef
  56. Sun L, Singh AK, Vig K, Pillai SR, Singh SR. 2008. Silver nanoparticles inhibit replication of respiratory syncytial virus. J. Biomed. Nanotechnol. 4: 149-158.
  57. Swamy MK, Sudipta KM, Jayanta K. Balasubramanya S. 2015. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulate leaf extract. Appl. Nanosci. 5: 73-81.
    CrossRef
  58. Vorobyova SA, Lesnikovich AI, Sobal NS. 1999. Preparation of silver nanoparticles by interphase reduction. Colloids Surf. A: Physicochem. Eng. Aspects 152: 375-379.
    CrossRef
  59. Webster RG, Bean WJ, German OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56: 152-179.
    Pubmed Pubmed Central
  60. Wei D, Qian W. 2008. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerface 62: 136-142.
    Pubmed CrossRef
  61. Willner I, Baron R, Willner B. 2006. Growing metal nanoparticles by enzymes. Adv. Mater. 18: 1109-1120.
    CrossRef
  62. Won JN, Lee SY, Song DS Poo H. 2013. Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. J. Microbiol. Biotechnol. 23: 125-130.
    Pubmed CrossRef
  63. Xia Y, Halas NJ. 2005. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30: 338-348.
    CrossRef
  64. Xiang DX, Chen Q, Pang L, Zheng CL. 2011. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J. Virol. Methods 178: 137-142.
    Pubmed CrossRef
  65. Yu DG. 2007. Formation of colloidal silver nanoparticles stabilized by Na+-poly (-glutamic acid) silver nitrate complex via chemical reduction process. Colloids Surf. B Biointerfaces 59: 171-178.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd