Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2015 ; Vol.25-12: 2043~2048

AuthorSeung-Hak Cho, Suk-Ho Kang, Yea-Eun Lee, Sung-Jo Kim, Young-Bin Yoo, Yeong-Seok Bak, Jung-Beom Kim
Place of dutyDivision of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Osong 363-951, Republic of Korea
TitleDistribution of Toxin Genes and Enterotoxins in Bacillus thuringiensis Isolated from Microbial Insecticide Products
PublicationInfo J. Microbiol. Biotechnol.2015 ; Vol.25-12
AbstractBacillus thuringiensis microbial insecticide products have been applied worldwide. Although a few cases of B. thuringiensis foodborne illness have been reported, little is known about the toxigenic properties of B. thuringiensis isolates. The aims of this study were to estimate the pathogenic potential of B. thuringiensis selected from microbial insecticide products, based on its possession of toxin genes and production of enterotoxins. Fifty-two B. thuringiensis strains selected from four kinds of microbial insecticide products were analyzed. PCR assay for detection of toxin genes and immunoassay for detection of enterotoxins were performed. The hemolysin BL complex as a major enterotoxin was produced by 17 (32.7%), whereas the nonhemolytic enterotoxin complex was detected in 1 (1.9%) of 52 B. thuringiensis strains. However, cytK, entFM, and ces genes were not detected in any of the tested B. thuringiensis strains. The potential risk of food poisoning by B. thuringiensis along with concerns over B. thuringiensis microbial insecticide products has gained attention recently. Thus, microbial insecticide products based on B. thuringiensis should be carefully controlled.
Full-Text
Key_wordBacillus thuringiensis, microbial insecticide, enterotoxin, toxin gene
References
  1. Bartoszewicz M, Hansen BM, Swiecicka I. 2008. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 25: 588-596.
    Pubmed CrossRef
  2. Bartoszewicz M, Bideshi DK, Kraszewska A, Modzelewska E, Swiecicka I. 2009. Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristics of Bacillus weihenstephanenesis. J. Appl. Microbiol. 106: 19671975.
    Pubmed CrossRef
  3. Bizzarri MF, Bishop AH. 2006. Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. J. Invertebr. Pathol. 94: 38-47.
    Pubmed CrossRef
  4. Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. 2012. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol. 32: 217-222.
    Pubmed CrossRef
  5. ESFA (European Food Safety Authority). 2005. Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J. 175: 1-48.
  6. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, and Andersson M. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for emetic toxin production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113.
    Pubmed CrossRef Pubmed Central
  7. Ehling-Schulz M, Svensson B, Guinbretiere MH, Lindbäck T, Andersson M, Schulz A, et al. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related isolates. Microbiology 151: 183-197.
    Pubmed CrossRef
  8. Ehling-Schulz M, Guinbretiere MH, Monthán A, Berge O, Fricker M, Svensson B. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232-240.
    Pubmed CrossRef
  9. Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M. 2008. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol. 74: 6997-7001.
    Pubmed CrossRef Pubmed Central
  10. Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189.
    Pubmed CrossRef Pubmed Central
  11. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627-2630.
    Pubmed CrossRef Pubmed Central
  12. Hendriksen NB, Hansen BM. 2006. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. FEMS Microbiol. Lett. 257: 106-111.
    Pubmed CrossRef
  13. Janes GB, Larsen P, Jacobsen BL, Madsen B, Smidt L, Andrup L. 2002. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Appl. Environ. Microbiol. 68: 4900-4905.
    CrossRef Pubmed Central
  14. Jeon JH, Park JH. 2010. Toxin gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food Sci. Technol. 42: 361-367.
  15. Kim JB, Kim JM, Cho SH, Choi NJ, Oh DH. 2011. Toxin genes profiles and toxin producing ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: T25T29.
    CrossRef Pubmed Central
  16. Kim JB, Park JS, Kim MS, Hong SC, Park JH, Oh DH. 2011. Genetic diversity of emetic toxin producing Bacillus cereus Korean strains. Int. J. Food Microbiol. 150: 66-72.
    Pubmed CrossRef
  17. Lund T, Debuyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261.
    Pubmed CrossRef
  18. Maughan H, Van der Auwera G. 2011. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect. Genet. Evol. 11: 789-797.
    Pubmed CrossRef
  19. McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC. 2008. Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microbiol. 74: 7451-7453.
    Pubmed CrossRef Pubmed Central
  20. Modrie P, Beuls E, Mahillon J. 2010. Differential transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J. Appl. Microbiol. 108: 888897.
    Pubmed CrossRef
  21. Naranjo M, Denayer S, Botteldoorn N, Delbrassinne L, Veys J, Waegenaere J, et al. 2011. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 49: 4379-4381.
    Pubmed CrossRef Pubmed Central
  22. Naranjo SE, Ellsworth PC. 2010. Fourteen years of Bt cotton advantages IPM in Arizona. Southwest Entomol. 35: 437-444.
    CrossRef
  23. Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikan C, Ohba M, Assavanig A, Panbabgred W. 2008. Broad distribution of enterotoxin genes (hblCDA, nhe ABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121: 352-356.
    Pubmed CrossRef
  24. Oh MH, Ham JS, Cox JM. 2012. Diversity and toxigenicity among members of Bacillus cereus group. Int. J. Food Microbiol. 152: 1-8.
    Pubmed CrossRef
  25. Pluina NV, Zotov VS, Parkhomenko AL, Parkhomenko TU, Topunov AF. 2013. Genetic diversity of Bacillus thuringiensis from different geo-ecological regions of Ukraine by analyzing the 16S rRNA and gyrB genes and by AP-PCR and saAFLP. Acta Nat. 5: 90-100.
  26. Prabhaker A, Bishop AH. 2011. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica. J. Invertebr. Pathol. 107: 132-138.
    Pubmed CrossRef
  27. Rajkovic A, Uyttendaele M, Vermeulen A, Andjelkovic M, Fitz-James I, in 't Veld P, et al. 2008. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 46: 536-541.
    Pubmed CrossRef
  28. Roh JY, Choi JY, Li MS, Jin BR, Je YH. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559.
    Pubmed
  29. Rosenquits H, Smidt L, Andersen SR, Jensen GB, Wilcks A. 2005. Occurrence and significance of Bacillus cereus and B. thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250: 129-136.
    Pubmed CrossRef
  30. Ryan PA, MacMillan JD, Zilinskas BA. 1997. Molecular cloning and characterization of the genes encoding L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551-2556.
    Pubmed Pubmed Central
  31. Sacch CT, Whitney AM, Mayer LW, Morey R, Steigerwalt A, Boras A, et al. 2002. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerg. Infect. Dis. 8: 1117-1123.
    Pubmed CrossRef Pubmed Central
  32. Schnepf E , Crickmore N, V an R ie J , Lereclus D , Baum J , Feitelson J, et al. 1998. Bacillus thurigiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
    Pubmed Pubmed Central
  33. Schoeni JL, Wong AC. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53: 159-167.
    CrossRef
  34. Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648.
    Pubmed
  35. Seong SJ, Lee KG, Lee SJ, Hong KW. 2008. Toxin gene profiling of Bacillus cereus food isolates by PCR. J. Korean Soc. Appl. Biol. Chem. 54: 263-268.
    CrossRef
  36. Stenfors LP, Granum PE. 2001. Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197: 223-228.
    Pubmed CrossRef
  37. Stenfos-Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606.
    Pubmed CrossRef
  38. Svensson B, Monthán A, Shaheen R, Andersson M, Salkinoja-Salonen M, Christiansson A. 2006. Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int. Dairy J. 16: 740-749.
    CrossRef
  39. Swiecicka I, Mahillon J. 2006. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol. Ecol. 56: 132-140.
    Pubmed CrossRef
  40. Tran SL, Guillement E, Gohar M, Lereclus D, Ramarao N. 2010. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J. Bacteriol. 192: 2638-2642.
    Pubmed CrossRef Pubmed Central
  41. Van der Auwere GA, Timmery S, Hoton F, Mahillon J. 2007. Plasmid exchanges among members of the Bacillus cereus group in foodstuff. Int. J. Food Microbiol. 113: 164-172.
    Pubmed CrossRef
  42. Yang CY, Pang JC, Kao SS, Tsen HY. 2003. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem. 51: 100-105.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd